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Camera Pose Estimation and SDF Generation

1. Estimate the camera pose, the 6 DoF transformation from the camera coordinate
to world coordinate.

2. Extract local features: We use the camera pose to find a 3D point's 2D location
on the image and extract local feature patches from multiple network layers.
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Motivations:

1. Mesh surface is the most desired 3D representation for 3D object reconstruction. - Global Features
PC In WAL
2. Voxels and point clouds have limited resolution. Modeling explicit surfaces (e.qg. GT Cam Space T =
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-y Transformation
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(EMD) penalize mostly on overall shape.
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lllustration of SDF:

(a) Rendered 3D surface with S = 0.

(b) Cross-section of the SDF. A pointis
outside the surface if s > 0, inside if s <0,
and on the surface if s= 0.

(a)

Multi-view reconstruction: (a) Single-view
input. (b) Reconstruction result from (a).
(c)&(d) Two other views input. (e) Multi-view
reconstruction result from (a), (c) and (d).

pP(X,Y,2) Point Features

Model Overview: we use global, local and point
features to predict SDF for many locations in the space.

Ablation studies: ‘GT’ denotes ground truth shapes, ‘cam’ denotes models with estimated camera pose.
'‘Binary’ denotes prediction of inside or outside the surface instead of a distance value. “One-stream”
denotes concatenate global and local features instead of adding them in the network. DISN uses two-stream
and predict real signed distance value to the object surface.

We train DISN on rendered images of
ShapeNet and test it on real online images.




