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Figure 1. Point-NeRF uses neural 3D points to efficiently represent and render a continuous radiance volume. The point-based radiance
field can be predicted via network forward inference from multi-view images. It can then be optimized per scene to achieve reconstruction
quality that surpasses NeRF [35] in tens of minutes. Point-NeRF can also leverage off-the-shelf reconstruction methods like COLMAP [44]
and is able to perform point pruning and growing that automatically fix the holes and outliers that are common in these approaches.

Abstract

Volumetric neural rendering methods like NeRF [35]
generate high-quality view synthesis results but are opti-
mized per-scene leading to prohibitive reconstruction time.
On the other hand, deep multi-view stereo methods can
quickly reconstruct scene geometry via direct network in-
ference. Point-NeRF combines the advantages of these two
approaches by using neural 3D point clouds, with associ-
ated neural features, to model a radiance field. Point-NeRF
can be rendered efficiently by aggregating neural point fea-
tures near scene surfaces, in a ray marching-based render-
ing pipeline. Moreover, Point-NeRF can be initialized via
direct inference of a pre-trained deep network to produce
a neural point cloud; this point cloud can be finetuned to
surpass the visual quality of NeRF with 30× faster train-
ing time. Point-NeRF can be combined with other 3D re-
construction methods and handles the errors and outliers
in such methods via a novel pruning and growing mecha-
nism. The experiments on the DTU [18], the NeRF Synthet-
ics [35], the ScanNet [11] and the Tanks and Temples [23]
datasets demonstrate Point-NeRF can surpass the existing
methods and achieve the state-of-the-art results. Please
visit our website https://xharlie.github.io/

†This work is partially done during the internship at Adobe Research.

projects/project_sites/pointnerf for code
and more results.

1. Introduction
Modeling real scenes from image data and rendering

photo-realistic novel views is a central problem in com-
puter vision and graphics. NeRF [35] and its extensions
[29, 32, 63] have shown great success on this by modeling
neural radiance fields. These methods [35, 38, 63] often re-
construct radiance fields using global MLPs for the entire
space through ray marching. This leads to long reconstruc-
tion times due to the slow per-scene network fitting and the
unnecessary sampling of vast empty space.

We address this issue using Point-NeRF, a novel point-
based radiance field representation that uses 3D neural
points to model a continuous volumetric radiance field. Un-
like NeRF that purely depends on per-scene fitting, Point-
NeRF can be effectively initialized via the inference of a
deep neural network, pre-trained across scenes, leading to
efficient radiance field reconstruction. Moreover, Point-
NeRF avoids ray sampling in the empty scene space by
leveraging classical point clouds that approximate the ac-
tual scene geometry. This advantage of Point-NeRF leads
to more efficient reconstruction and more accurate render-
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ing than other neural radiance field models [8, 35, 53, 62].
Our Point-NeRF representation consists of a point cloud

with per-point neural features: each neural point encodes
the local 3D scene geometry and appearance around it.
Prior point-based neural rendering techniques [2] use sim-
ilar neural point clouds but perform rendering with rasteri-
zation and 2D CNNs operating in image space. We instead
treat these neural points as local neural basis functions in
3D to model a continuous volumetric radiance field which
enables high-quality neural rendering using differentiable
ray marching. In particular, for any 3D location, we pro-
pose to use an MLP network to aggregate the neural points
in its neighborhood to regress the volume density and view-
dependent radiance at that location. This expresses a contin-
uous radiance field, enabling high-quality neural rendering
via volume rendering

We present a learning-based framework to efficiently
generate and optimize the point-based radiance fields. To
generate a initial field, we leverage deep multi-view stereo
(MVS) techniques [59], i.e., applying a cost-volume-based
network to predict depth which is then unprojected to 3D
space. In addition, a deep CNN is trained to extract 2D
feature maps from input images, naturally providing the
per-point features for the unprojected points. These neu-
ral points from multiple views are combined as a neural
point cloud, which forms a point-based radiance field of the
scene. We train this point generation module with the point-
based volume rendering networks from end to end, to ren-
der novel view images and supervise them with the ground
truth. This leads to a generalizable model that can directly
predict a point-based radiance field at inference time. Once
predicted, the initial point-based field is further optimized
per scene in a short period to achieve photo-realistic ren-
dering. As shown in Fig. 1 (left), 40 minutes of optimiza-
tion with Point-NeRF outperforms a NeRF model trained
for two days.

Besides using the in-built point cloud reconstruction, our
approach is generic and can also generate a radiance field
based on a point cloud of other reconstruction techniques.
However, the reconstructed point cloud produced by tech-
niques like COLMAP [44], in practice, contain holes and
outliers that adversely affect the final rendering. To ad-
dress this issue, we introduce point growing and pruning as
part of our optimization process. We leverage the geomet-
ric reasoning during volume rendering [13] and grow points
near the point cloud boundary in high-density regions and
prune points in low-density regions. The mechanism effec-
tively improves our final reconstruction and rendering qual-
ity. We show an example in Fig. 1 (right) where we con-
vert COLMAP points to a radiance field and successfully
fill large holes and produce photo-realistic renderings.

We train our model on the DTU dataset [18] and evalu-
ate on DTU testing scenes and NeRF synthetic scenes. The

results demonstrate that our approach can achieve state-of-
the-art novel view synthesis, outperforming many prior arts
including point-based methods [2], NeRF, NSVF [29], and
many other generalizable neural methods [8, 53, 62] (see
(Tab. 1 and 2)).

2. Related Work

Scene representations. Traditional and neural methods
have studied many 3D scene representations, including vol-
umes [19, 25, 41, 46, 56], point clouds [1, 40, 51], meshes
[20, 52], depth maps [17, 28], and implicit functions [9, 33,
37, 60], in diverse vision and graphics applications. Re-
cently, various neural scene representations have been pre-
sented [4, 30, 47, 66], advancing the state of the art in novel
view synthesis and realistic rendering, with volumetric neu-
ral radiance fields (NeRFs) [35] producing high fidelity
results. NeRFs are often reconstructed as global MLPs
[35, 38, 63] that encode the entire scene space; this can
be inefficient and expensive when reconstructing complex
and large-scale scenes. Instead, Point-NeRF is a localized
neural representation, combining volumetric radiance fields
with point clouds that are classically used to approximate
scene geometry. We distribute fine-grained neural points to
model complex local scene geometry and appearance, lead-
ing to better rendering quality than NeRF (see Fig. 6, 7).

Voxel grids with per-voxel neural features [8, 16, 29] are
also a local neural radiance representation. However, our
point-based representation adapts better to actual surfaces,
leading to better quality. Also, we directly predict good ini-
tial neural point features, bypassing the per-scene optimiza-
tion that is required by most voxel-based methods [16, 29].

Multi-view reconstruction and rendering. Multi-view 3D
reconstruction has been extensively studied and addressed
with a number of structure-from-motion [43, 49, 50] and
multi-view stereo techniques [10, 14, 25, 44, 59]. Point
clouds are often the direct output from MVS or depth sen-
sor, though they are usually converted to meshes [21,31] for
rendering and visualization. Meshing can introduce errors
and may require image-based rendering [6,12,65] for high-
quality rendering. We instead directly use point clouds from
deep MVS to achieve realistic rendering.

Point clouds have been widely used in rendering, of-
ten via rasterization-based point splatting, and even differ-
entiable rasterization modules [26, 55]. However, recon-
structed point clouds often have holes and outliers that lead
to artifacts in rendering. Point-based neural rendering meth-
ods address this by splatting neural features and using 2D
CNNs to render them [2,24,34]. In contrast, our point-based
approach utilizes 3D volume rendering, leading to signifi-
cantly better results than previous point-based methods.

Neural radiance fields. NeRFs [35] have demonstrated
remarkably high-quality results for novel view synthesis.
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They have been extended to achieve dynamic scene cap-
ture [27, 39], relighting [3, 5], appearance editing [57], fast
rendering [16, 61], and generative models [7, 36, 45]. How-
ever, most methods [3, 27, 39, 57] still follow the original
NeRF framework and train per-scene MLPs to represent ra-
diance fields. We make use of neural points with spatially
varying neural features in a scene to encode its radiance
field. This localized representation can model more com-
plex scene content than pure MLPs that have limited net-
work capacity. More importantly, we show that our point-
based neural field can be efficiently initialized via a pre-
trained deep neural network that generalizes across scenes
and leads to highly efficient radiance field reconstruction.

Prior works also present generalizable radiance field-
based methods. PixelNeRF [62] and IBRNet [53] aggregate
multi-view 2D image features at every sampled ray point to
regress volume rendering properties for radiance field ren-
dering. In contrast, we leverage features in 3D neural points
around the scene surface to model radiance fields. This
avoids sampling points in the vast empty space and leads
to higher rendering quality and faster radiance field recon-
struction than PixelNeRF and IBRNet. MVSNeRF [8] can
achieve very fast voxel-based radiance field reconstruction.
However, its prediction network requires a fixed number of
three small-baseline images as input and thus can only effi-
ciently reconstruct local radiance fields. Our approach can
fuse neural points from an arbitrary number of views and
achieve fast reconstruction of complete 360 radiance fields
which MVSNeRF cannot support.

3. Point-NeRF Representation

We present our novel point-based radiance field repre-
sentation, designed for efficient reconstruction and render-
ing (see Fig. 2 (b)). We start with some preliminaries.

Volume rendering and radiance fields. Physically-based
volume rendering can be numerically evaluated via differ-
entiable ray marching. Specifically, a pixel’s radiance can
be computed by marching a ray through the pixel, sampling
M shading points at {xj | j = 1, ...,M} along the ray, and
accumulating radiance using volume density, as:

c =
∑
M

τj(1− exp(−σj∆j))rj ,

τj = exp(−
j−1∑
t=1

σt∆t).

(1)

Here, τ represents volume transmittance; σj and rj are the
volume density and radiance for each shading point j at xj ,
∆t is the distance between adjacent shading samples.

A radiance field represents the volume density σ and
view-dependent radiance r at any 3D location. NeRF [35]
proposes to use a multi-layer perceptron (MLP) to regress
such radiance fields. We propose Point-NeRF that instead

utilizes a neural point cloud to compute the volume proper-
ties, allowing for faster and higher-quality rendering.

Point-based radiance field. We denote a neural point cloud
by P = {(pi, fi, γi)|i = 1, ..., N}, where each point i is
located at pi and associated with a neural feature vector fi
that encodes the local scene content. We also assign each
point a scale confidence value γi ∈ [0, 1] that represents
how likely that point is being located near an actual scene
surface. We regress the radiance field from this point cloud.

Given any 3D location x, we query K neighboring neu-
ral points around it within a certain radius R. Our point-
based radiance field can be abstracted as a neural module
that regresses volume density σ and view-dependent radi-
ance r (along any viewing direction d) at any shading loca-
tion x from its neighboring neural points as:

(σ, r) = Point-NeRF(x, d, p1, f1, γ1, ..., pK , fK , γK). (2)

We use a PointNet-like [40] neural network, with multiple
sub-MLPs, to do this regression. Overall, we first conduct
neural processing for each neural point and then aggregate
the multi-point information to obtain the final estimates.

Per-point processing. We use an MLP F to process each
neighboring neural point to predict a new feature vector for
the shading location x by:

fi,x = F (fi, x− pi). (3)

Essentially, the original feature fi encodes the local 3D
scene content around pi. This MLP network expresses a
local 3D function that outputs the specific neural scene de-
scription fi,x at x, modeled by the neural point in its local
frame. The usage of relative position x − p makes the net-
work invariant to point translation for better generalization.

View-dependent radiance regression. We use standard in-
verse distance weighting to aggregate the neural features
fi,x regressed from these K neighboring points to obtain
a single feature fx that describes scene appearance at x:

fx =
∑
i

γi
wi∑
wi

fi,x, wi =
1

∥pi − x∥
. (4)

Then an MLP, R, regress the view-dependent radiance from
this feature given a viewing direction, d:

r = R(fx, d). (5)

The inverse-distance weight wi is widely used in scattered
data interpolation; we leverage it to aggregate neural fea-
tures, making closer neural points contribute more to the
shading computation. In addition, we use the per-point con-
fidence γ in this process; this is optimized in the final recon-
struction with a sparsity loss, giving the network the flexi-
bility of rejecting unnecessary points.

Density regression. To compute volume density σ at x, we
follow a similar multi-point aggregation. However, we first
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(a) Neural Point Generation. (b) Point-NeRF Representation with Volume Rendering.

Figure 2. Overview of Point-NeRF. (a) From multi-view images, our model generates depth for each view by using a cost volume-based
3D CNNs Gp,γ and extract 2D features from the input images by a 2D CNN Gf . After aggregating the depth map, we obtain a point-based
radiance field in which each point has a spatial location pi, a confidence γi and the unprojected image features fi. (b) To synthesize a novel
view, we conduct differentiable ray marching and compute shading only nearby the neural point cloud (e.g., xa, xb, xc). At each shading
location, Point-NeRF aggregates features from its K neural point neighbors and compute radiance r and volume density σ then accumulate
r using σ. The entire process is end-to-end trainable and the point-based radiance field can be optimized with the rendering loss.

regress a density σi per point using an MLP T and then do
inverse distance-based weighting, given by:

σi = T (fi,x) (6)

σ =
∑
i

σiγi
wi∑
wi

, wi =
1

∥pi − x∥
. (7)

Thus, each neural point directly contributes to the volume
density, and point confidence γi is explicitly associated with
this contribution. We leverage this in our point removal pro-
cess (see Sec. 4.2).

Discussion. Unlike previous neural point-based methods
[2, 34] that rasterize point features and then render them
with 2D CNNs, our representation and rendering are en-
tirely in 3D. By using a point cloud that approximates the
scene geometry, our representation naturally and efficiently
adapts to scene surfaces and avoids sampling shading loca-
tions in empty scene space. For shading points along each
ray, we implement an efficient algorithm to query neighbor-
ing neural points; details are in the supplemental material.

4. Point-NeRF Reconstruction
We now introduce our pipeline for efficiently recon-

structing point-based radiance fields. We first leverage
a deep neural network, trained across scenes, to gener-
ate an initial point-based field via direct network infer-
ence (Sec. 4.1). This initial field is further optimized per
scene with our point growing and pruning techniques, lead-
ing to our final high-quality radiance field reconstruction
(Sec. 4.2). Figure. 3 shows this workflow with the corre-
sponding gradient updates for the initial prediction and per-
scene optimization.

4.1. Generating initial point-based radiance fields

Given a set of known images I1,...,IQ, and a point cloud,
our Point-NeRF representation can be reconstructed by op-
timizing the randomly initialized per-point neural features

Figure 3. The dash lines indicate gradient updates for radiance
field initialization and per-scene optimization.

and the MLPs with a rendering loss (similar to NeRF).
However, this pure per-scene optimization depends on an
exisiting point cloud, and can be prohibitively slow. There-
fore, we propose a neural generation module to predict all
neural point properties, including point locations pi, neu-
ral features fi and point confidence γi, via a feed-forward
neural network for efficient reconstruction. The direct in-
ference of the network outputs a good initial point-based
radiance field. The initial fields can then be fine-tuned to
achieve high-quality rendering. In a very short period, the
rendering quality is better or on par with NeRF which takes
substantially longer time to optimize (see Tab. 1 and 2).

Point location and confidence. We leverage deep MVS
methods to generate 3D point locations using cost volume-
based 3D CNNs [10, 59]. Such networks produce high-
quality dense geometry and generalize well across domains.
For each input image Iq with camera parameters Φq at view-
point q, we follow MVSNet [17] to first build a plane-swept
cost volume by warping 2D image features from neighbor-
ing viewpoints and then regress depth probability volume
using deep 3D CNNs. A depth map is computed by linearly
combining per-plane depth values weighted by the proba-
bilities. We unprojected the depth map to 3D space to get a
point cloud {p1, ..., pNq} per view q.

Since the depth probabilities describe the likelihood of
the point being on the surface, we tri-linearly sample the
depth probability volume to obtain the point confidence γi
at each point pi. The above process can be expressed by

{pi, γi} = Gp,γ(Iq,Φq, Iq1 ,Φq1 , Iq2 ,Φq2 , ...), (8)
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where Gp,γ is the MVSNet-based network. Iq1 ,Φq1 , ... are
additional neighboring views used in the MVS reconstruc-
tion; we use two additional views in most cases.

Point features. We use a 2D CNN Gf to extract neural
2D image feature maps from each image Iq . These fea-
ture maps are aligned with the point (depth) prediction from
Gp,γ and are used to directly predict per-point features fi as:

{fi} = Gf (Iq). (9)

In particular, we use a VGG network architecture for Gf

that has three downsampling layers. We combine inter-
mediate features at different resolutions as fi, providing a
meaningful point description that models multi-scale scene
appearance. (See Fig. 2(a))

End-to-end reconstruction. We combine point clouds
from multiple viewpoints to obtain our final neural point
cloud. We train the point generation networks along with
the representation networks, from end to end with a render-
ing loss (see Fig. 3). This allows our generation modules to
produce reasonable initial radiance fields. It also initializes
the MLPs in our Point-NeRF representation with reasonable
weights, significantly saving the per-scene fitting time.

Moreover, apart from using the full generation mod-
ule, our pipeline also supports using a point cloud recon-
structed from other approaches like COLMAP [44], where
our model (excluding the MVS network) can still provide
meaningful initial neural features for each point. Please re-
fer to our supplementary material for the details.

4.2. Optimizing point-based radiance fields

The above pipeline can output a reasonable initial point-
based radiance field for a novel scene. Through differen-
tiable ray marching, we can further improve the radiance
field by optimizing the neural point cloud (point features fi
and point confidence γi) and the MLPs in our representa-
tion, for that specific scene (see Fig. 3).

The initial point cloud, especially ones from external
reconstruction methods (e.g., Metashape or COLMAP in
Fig. 1), can often contain holes and outliers that degrade the
rendering quality. During per-scene optimization, to solve
this problem, we find that directly optimizing the location
of the existing points makes the training unstable and can-
not fill the large holes (see 1). Instead, we apply novel
point pruning and growing techniques that gradually im-
prove both geometry modeling and rendering quality.

Point pruning. As introduced in Sec. 3, we designed point
confidence values γi that describe whether a neural point is
near a scene surface. We utilize these confidence values to
prune unnecessary outlier points. Note that the point con-
fidence is directly related to the per-point contribution in
volume density regression (Eqn. 7); as a result, low confi-
dence reflects low volume density in a point’s local region

indicating that it is empty. Therefore, we prune points that
have γi < 0.1 every 10K iterations.

We also impose a sparsity loss on point confidence [30]:

Lsparse =
1

|γ|
∑
γi

[log(γi) + log(1− γi)] (10)

which forces the confidence value to be close to either zero
or one. As shown in Fig. 4, this pruning technique can re-
move outlier points and reduce the corresponding artifacts.

Point growing. We also propose a novel technique to grow
new points to cover missing scene geometry in the origi-
nal point cloud. Unlike point pruning that directly utilizes
information from existing points, growing points requires
recovering information in empty regions where no point ex-
ists. We achieve this by progressively growing points near
the point cloud boundary based on the local scene geometry
modeled by our Point-NeRF representation.

In particular, we leverage the per-ray shading locations
(xj in Eqn. 1) sampled in the ray marching to identify new
point candidates. Specifically, we identify the shading loca-
tion xjg with the highest opacity along the ray:

αj = 1− exp(−σj∆j), jg = argmax
j

αj . (11)

We compute ϵjg as xjg ’s distance to its closest neural point.
For a marching ray, we grow a neural point at xjg if

αjg > Topacity and ϵjg > Tdist. This implies that the loca-
tion lies near the surface, but is far from other neural points.
By repeating this growing strategy, our radiance field can
be expanded to cover missing regions in the initial point
cloud. Point growing especially benefits point clouds recon-
structed by methods like COLMAP that are not dense (see
Fig. 4). We show that even on an extreme case with only
1000 initial points, our technique is able to progressively
grow new points and reasonably cover the object surface
(see Fig. 5).

5. Implementation details
Network details. We apply frequency positional encoding
on the relative position and the per-point features for the
per-point processing network Gf , and the viewing direc-
tion for the network R. We extract multi-scale images fea-
tures from three layers at different resolutions in network
Gf , leading to a vector with 56 (8+16+32) channels. We
additionally append the corresponding viewing directions
from each input viewpoint, to handle view-dependent ef-
fects. Therefore our final per-point neural feature is a 59-
channel vector. Please refer to our supplemental material
for the details of network architectures and neural point
querying during shading.

Training and optimization details. We train our full
pipeline on the DTU dataset, using the same training and
testing split as PixelNeRF and MVSNeRF. We first pre-
train the MVSNet-based depth generation network using
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the ground truth depth similar to the original MVSNet pa-
per [59]. We then train our full pipeline from end to end
purely with a L2 rendering loss Lrender, supervising our ren-
dered pixels from ray marching (via Eqn. 1) with the ground
truth, to obtain our Point-NeRF reconstruction network. We
train our full pipeline using Adam [22] optimizer with an
initial learning rate of 5e−4. Our feed-forward network
takes 0.2s to generate a point cloud from three input views.

In the per-scene optimization stage, we adopt a loss func-
tion that combines the rendering and the sparsity loss

Lopt = Lrender + aLsparse, (12)
where we use a = 2e−3 for all our experiments. We
perform point growing and pruning every 10K iterations to
achieve our final high-quality reconstruction.

6. Experiments
6.1. Evaluation on the DTU testing set.

We first evaluate our model on the DTU testing set. We
produce novel view synthesis results from both direct net-
work inference and per-scene fine-tuning optimization with
different iterations, and compare them with the previous
state-of-the art methods including PixelNeRF [62], IBR-
Net [53], MVSNeRF [8], and NeRF [35]. IBRNet and
MVSNeRF utilize similar per-scene fine-tuning; we fine-
tune all methods with 10k iterations for the comparison.
Additionally, we show our results with only 1k iterations
to demonstrate the efficiency of our optimization.

Tab. 1 shows the quantitative results of all methods with
PSNR, SSIM, and LPIPS; qualitative rendering results are
shown in Fig. 6. We can see that our final fine-tuning results
after 10k iterations achieve the best SSIM and LPIPS [64],
two out of the three metrics. These are significantly better
than the final MVSNeRF and NeRF results. While IBRNet
produces slightly better PSNR results, our final renderings
in fact recover more accurate texture details and highlights
as shown Fig. 6. On the other hand, IBRNet is also more
expensive to fine-tune, taking 1 hour—5x longer than our
fine-tuning for the same iteration number. This is because
IBRNet depends on a large global CNN, whereas our model
leverages local point features with small MLPs that are eas-
ier to optimize. More importantly, our point-based repre-
sentation lies near actual scene surfaces and thus avoids
sampling ray points in the empty scene space, leading to
highly efficient per-scene optimization.

Apart from the optimization results, our initial radiance
field estimated from our network is significantly better than
PixelNeRF. In this case, our direct inference is worse than
IBRNet and MVSNet, mainly because these two methods
are using more complex variance-based feature extraction.
Our point features are extracted from a simple VGG net-
work. The same design is used in PixelNeRF; we achieve
significantly better results than PixelNeRF due to our novel

surface-adaptive point-based representation.
While a more complex feature extractor as in IBRNet

might improve quality, it will add burden to memory usage
and training efficiency. More importantly, our generation
network has already provided high-quality initial radiance
field to support efficient optimization. We show that with
even 2 min / 1K iterations of fine-tuning for our method
leading to a very high visual quality comparable to MVS-
NeRF’s final 10k-iteration results. This clearly demon-
strates the high reconstruction efficiency of our approach.

6.2. Evaluation on the NeRF Synthetic dataset.

While our model is purely trained on the DTU dataset,
our network generalizes well to novel datasets that have
completely different camera distributions. We demonstrate
such results on the NeRF synthetic dataset and compare
with other state-of-the-art methods with qualitative results
in Fig. 7 and quantitative results in Tab. 2. In particular, we
compare with a point-based rendering model (NPBG) [2], a
generalizable radiance field method (IBRNet) [53], and per-
scene radiance field reconstruction techniques (NeRF and
NSVF) [29, 35].

Comparisons with generalizing methods. We compare
with IBRNet, to the best of our knowledge, is the previous
best NeRF-based generalizable model that can handle free-
viewpoint rendering with any arbitrary numbers. Note that,
this dataset has a 360◦ camera distribution, which is much
wider than the DTU dataset. In this case, a local recon-
struction method like MVSNeRF cannot be applied, since
it recovers a local perspective frustum volume from a fixed
number of three input images, which cannot cover the en-
tire 360◦ viewing range. We, therefore, compare with IBR-
Net and focus on final results after per-scene optimization
in this experiment. We use their released model to produce
the results. We show results from both methods optimized
for 20K iterations. Our results (Point-NeRF20K) are sig-
nificantly better than the IBRNet results with better PSNR,
SSIM, and LIPIPS; we also achieve rendering quality with
better geometry and texture details as shown in Fig. 7.

Comparisons with pure per-scene methods. Our results
after 20K iterations are quantitatively very close to NeRF’s
results trained with 200K iterations. Visually, our model at
20K iterations already has better renderings in some cases,
e.g. the Ficus scene (4th row) in Fig. 7. Point-NeRF20K

is optimized for only 40 minutes, which is at least 30×
faster than the 20+ hours optimization time taken by NeRF.
NSVF’s [29] results are also from very long per-scene op-
timization and yet are only slightly better than our 40min
results. Optimizing our model for 200K until convergence
can lead to significantly better results than NeRF, NSVF,
and all other comparison methods. As shown in Fig. 7, our
200K results contain the most geometry and texture details.
Moreover, our method is the only one that can fully recover
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No Per-scene Optimization Per-scene Optimization
PixelNeRF [62] MVSNeRF [8] IBRNet [53] Ours Ours1K Ours10K MVSNeRF10K IBRNet10K NeRF200k [32]

PSNR ↑ 19.31 26.63 26.04 23.89 28.43 30.12 28.50 31.35 27.01
SSIM ↑ 0.789 0.931 0.917 0.874 0.929 0.957 0.933 0.956 0.902
LPIPSV gg ↓ 0.382 0.168 0.190 0.203 0.183 0.117 0.179 0.131 0.263
Time↓ - - - - 2min 20min 24min 1h 10h

Table 1. Comparisons of our Point-NeRF with radiance-based models [29, 32, 53] and a point-based rendering model [2] on the DTU
dataset [18] with the novel view synthesis setting introduced in [8]. The subscripts indicate the number of iterations during optimization.

NPBG [2] NeRF [32] IBRNet [53] NSVF [29] Point-NeRFcol
200K Point-NeRF20K Point-NeRF200K

PSNR ↑ 24.56 31.01 28.14 31.75 30.93 30.09 33.00
SSIM ↑ 0.923 0.947 0.942 0.964 0.971 0.963 0.978
LPIPSV gg ↓ 0.109 0.081 0.072 - 0.064 0.090 0.055
LPIPSAlex ↓ 0.095 - - 0.047 0.043 0.057 0.031

Table 2. Comparisons of Point-NeRF with radiance-based models [29,32,53] and a point-based rendering model [2] on the Synthetic-NeRF
dataset [32]. The subscripts indicate the number of iterations. Our model not only surpasses other methods when converged after 200K
steps (Point-NeRF200K ), but surpasses IBRNet [53] and is on par with NeRF [35] when optimized by only 20K steps (Point-NeRF20K ).
Our methods can also initialize radiance fields based on point clouds reconstructed by methods such as COLMAP (Point-NeRFcol

200K ).

Figure 4. Our neural point clouds and rendered novel views with
or without point pruning and growing (P&G). P&G improves both
the geometries and rendering results when using the point cloud
reconstructed from our model or from COLMAP [44].

details like the thin rope structure in the Ship scene (2nd
row) because of our point growing technique.

Comparisons with point-based rendering. Our results are
significantly better than the previous state-of-the-art point-
based rendering methods. For a fair comparison, we run
NPBG [2] using the same point cloud generated by our
MVSNet-based network. However, NPBG can only pro-
duce blurry rendering results with their rasterization and
2D CNN framework. In contrast, we leverage volumetric
rendering technique with neural radiance fields, leading to
photo-realistic results and high PSNRs.

6.3. Additional experiments.

Converting COLMAP point clouds to Point-NeRF As
mentioned, apart from using our full pipeline, our method
can also be used to convert standard point clouds recon-
structed by other techniques to point-based radiance fields.
We run experiments for this on the full NeRF synthetic
dataset, using the point cloud reconstructed by COLMAP
[44]. The quantitative results are shown as Point-NeRFcol

Figure 5. Starting from 1000 randomly sampled COLMAP points
of the Chair scene, our point growing mechanism can help com-
plete the geometry and generate high-quality novel views when
only being supervised by RGB images.

in Tab. 2. Since COLMAP point clouds may contain a lot
of holes (as shown in Fig. 1) and noises, we optimize the
model for 200K after the initialization to address the point
cloud issues with our point growing and pruning techniques.
Note that, even from this low-quality point cloud, our final
results are still of very high quality with very high SSIM
and LPIPS numbers compared to all other methods. This
demonstrates that our technique can be potentially com-
bined with any existing point cloud reconstruction tech-
niques, to achieve realistic rendering while improving the
point cloud geometry.

Point growing and pruning. To further demonstrate the
effectiveness of our point growing and pruning modules,
we show ablation study results with and without the point
growing and pruning in the per-scene optimization. We con-
duct this experiment on the Hotdog and Ship scenes, using
both our full model and our model with COLMAP point
clouds. The quantitative results are shown in Tab. 3; our
point growing and pruning techniques are very effective,
significantly improving the reconstruction results on both
cases. We also show the visual results of the Hotdog scene
in Fig. 4. We can clearly see that our model is able to prune
the point outliers on the left and successfully fill the severe
holes on the right in the original COLMAP point cloud.

We also manually create an extreme example to show
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our point growing technique in Fig. 5, where we start from a
very sparse point cloud with only 1000 points sampled from
our original point reconstruction. We demonstrate that our
approach can progressively grow new point from the point
cloud boundary until filling the entire scene surface through
iterations. This example further demonstrates the effective-
ness of our model, which has high potentials in using image
data to recover the accurate scene geometry and appearance
from low-quality point clouds.

Please refer to the supplemental materials for more abla-
tion studies on neural point feature initialization.

Method P&G Ship Hotdog
Ours No 25.50 / 0.878 / 0.182 34.91 / 0.983 /0.067
Ours Yes 30.82 / 0.943 / 0.126 36.93 / 0.990 / 0.041
COLMAP No 19.35 / 0.905 / 0.167 29.91 / 0.978 / 0.061
COLMAP Yes 29.83 / 0.940 / 0.136 34.76 / 0.985 / 0.062

Table 3. The quantitative results (PSNR / SSIM / LPIPSV gg) of the
Ship and Hotdog scene with or without point pruning and growing
(P&G). The improvements are significant when using either our
generated points or the point cloud generated by COLMAP [44].

7. Conclusion

In this paper, we present a novel approach for high-
quality neural scene reconstruction and rendering. We pro-
pose a novel neural scene representation—Point-NeRF—
that models a volumetric radiance field with a neural point
cloud. We reconstruct a good initialization of Point-NeRF
directly from input images via direct network inference and
show that we can efficiently finetune this initialization for a
scene. This enables highly efficient Point-NeRF reconstruc-
tion with only 20–40 min per-scene optimization, leading to
rendering quality comparable to and even surpassing NeRF
that requires substantially longer training time (20+ hours).
We also present novel effective growing and pruning tech-
niques for our per-scene optimization, significantly improv-
ing our results and making our approach robust with differ-
ent point cloud quality. Our Point-NeRF successfully com-
bines the advantages from both classical point cloud repre-
sentation and neural radiance field representation, making
an important step towards a practical scene reconstruction
solution with high efficiency and realism.
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Appendix

A. Ablation Studies on Point Features Initial-
ization

Extract20k Rand20k Extract200k Rand200k

PSNR↑ 30.09 25.44 33.00 32.01
SSIM↑ 0.963 0.932 0.978 0.972

Table 4. Comparisons between using the extracted image features
to initialize the point features (our full model) or using the random
initialized features.

We conduct experiments to demonstrate the importance
of our feature initialization. We compare our full model and
our model initialized without using the extracted image fea-
tures on the NeRF Synthetic dataset [35]. Without using the
features from images, we randomly initialize the point fea-
tures by using the popular Kaiming Initialization [15]. As
shown in Table 4, the neural points with image features not
only achieve better performance after convergence at 200K
iterations but also converge much faster in the beginning.
The randomly initialized neural points even cannot perform
as well as our full model, still outperforms state-of-the-art
methods such as NeRF and NSVF [29].

B. Per-scene Breakdown Results of the DTU
Dataset

We show the per scene detailed quantitative results of
the comparisons on the DTU [18] dataset in Table 5 and
additional qualitative comparisons in our video. Since our
method also faithfully reconstructs the scene geometry, our
method has the best SSIM scores in most of the cases. Our
model also has the best LPIPS for most of the scenes and
therefore, is more visually authentic, as shown in the Figure
6 of the main paper and the video. IBRNet combines the
colors from the source views to compute the radiance col-
ors during shading. This image-based approach results in
better PSNR. However, as shown in our video, our method
is more temporal consistent because the local radiance and
geometries are consistently stored at each neural point loca-
tion.

C. Per-scene Breakdown Results of the NeRF
Synthetic Dataset

We show the per scene detailed quantitative results of the
comparisons on the NeRF Synthetic [35] dataset in Table 6
and additional qualitative comparisons in our video. Point-
NeRF achieves the best PSNRs, SSIMs and LPIPSs on most

Scan #1 #8 #21 #103 #114
SSIM↑

Ours1K 0.935 0.906 0.913 0.944 0.948
Ours10K 0.962 0.949 0.954 0.961 0.960
MVSNeRF10K [8] 0.934 0.900 0.922 0.964 0.945
IBRNET10K [53] 0.955 0.945 0.947 0.968 0.964
NeRF200K [35] 0.902 0.876 0.874 0.944 0.913

LPIPSV gg ↓
Ours1K 0.151 0.207 0.201 0.208 0.148
Ours10K 0.095 0.130 0.134 0.145 0.096
MVSNeRF10K 0.171 0.261 0.142 0.170 0.153
IBRNET10K 0.129 0.170 0.104 0.156 0.099
NeRF200K 0.265 0.321 0.246 0.256 0.225

PSNR↑
Ours1K 28.79 28.39 24.78 30.36 29.82
Ours10K 30.85 30.72 26.22 32.08 30.75
MVSNeRF10K 28.05 28.88 24.87 32.23 28.47
IBRNET10K 31.00 32.46 27.88 34.40 31.00
NeRF200K 26.62 28.33 23.24 30.40 26.47

Table 5. Quantity comparison on five sample scenes in the DTU
testing set with the view synthesis setting introduced in [8]. The
subscripts indicate the number of iterations during optimization.

of the scenes and outperforms state-of-the-art methods [2,
29,35,53] with a big margin. On the other hand, our method
initiated with COLMAP points is on par with NeRF. Even
starting from the unideal initial points, we still manage to
improve the geometry reconstruction and generate a high-
quality radiance field with point pruning and growing. The
fact that our model at 20K iterations matches the results of
NeRF at 500K iterations clearly demonstrates our ability of
fast convergence.

D. Evaluation on Large-scale 3D Scenes (Scan-
Net).

While our model is purely trained on a dataset of ob-
jects (the DTU dataset), our network generalizes well to
large-scale 3D scene datasets. Following [29], we use two
3D scenes, scene 0101 04 and scene 0241 01, from Scan-
Net [11]. We extract both RGB and depth images from the
original videos and from which we sample one out of five
frames as training set and use the rest for testing. The RGB
images are scaled to 640 × 480. We finetune each scene for
300K steps with point pruning and growing.

We compare with 3 other state-of-the-art methods with
quantitative results in Tab. 2. In particular, we compare with
a scene representation model (SRN) [48], NeRF [35] and a
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NeRF Synthetic
Chair Drums Lego Mic Materials Ship Hotdog Ficus

PSNR↑
NPBG [2] 26.47 21.53 24.84 26.62 21.58 21.83 29.01 24.60
NeRF [35] 33.00 25.01 32.54 32.91 29.62 28.65 36.18 30.13
NSVF [29] 33.19 25.18 32.54 34.27 32.68 27.93 37.14 31.23
Point-NeRFcol

200K 34.98 25.01 32.51 34.49 25.26 29.13 34.76 31.33
Point-NeRF20K 32.25 25.03 30.28 32.00 27.85 27.36 34.36 31.61
Point-NeRF200K 35.34 26.06 34.20 35.42 29.69 30.82 36.93 35.57

SSIM↑
NPBG 0.939 0.904 0.923 0.959 0.887 0.866 0.964 0.940
NeRF 0.967 0.925 0.961 0.980 0.949 0.856 0.974 0.964
NSVF 0.968 0.931 0.960 0.987 0.973 0.854 0.980 0.973
Point-NeRFcol

200K 0.990 0.945 0.982 0.992 0.949 0.940 0.985 0.981
Point-NeRF20K 0.980 0.944 0.969 0.984 0.958 0.904 0.983 0.983
Point-NeRF200K 0.991 0.955 0.986 0.993 0.972 0.943 0.990 0.992

LPIPSV gg ↓
NPBG 0.085 0.112 0.119 0.060 0.134 0.210 0.075 0.078
NeRF 0.046 0.091 0.050 0.028 0.063 0.206 0.121 0.044
Point-NeRFcol

200K 0.024 0.096 0.036 0.023 0.102 0.134 0.062 0.034
Point-NeRF20K 0.053 0.103 0.087 0.041 0.103 0.198 0.081 0.051
Point-NeRF200K 0.022 0.077 0.030 0.018 0.070 0.126 0.041 0.025

LPIPSAlex ↓
NSVF 0.043 0.069 0.029 0.010 0.021 0.162 0.025 0.017
Point-NeRFcol

200K 0.012 0.070 0.018 0.015 0.082 0.089 0.043 0.019
Point-NeRF20K 0.028 0.057 0.040 0.031 0.078 0.144 0.053 0.026
Point-NeRF200K 0.010 0.055 0.013 0.009 0.039 0.072 0.019 0.011

Table 6. Detailed breakdown of quantitative metrics of individual scenes for the NeRF Synthetic [35] for our method and baselines. All
scores are averaged over the testing images. The subscripts are the number of iterations of the models and Point-NeRFcol

200K indicates our
method initiates from COLMAP points and optimized for 200 thousand iterations.

Average over two scenes Scene 101 Scene 241
SRN [48] NeRF [32] NSVF [29] Point-NeRF (Ours) Point-NeRF (Ours)

PSNR ↑ 18.25 22.99 25.48 30.32 30.13 30.51
SSIM ↑ 0.592 0.620 0.688 0.909 0.912 0.906
RMSE ↓ 14.764 0.681 0.079 0.031 0.032 0.030
LPIPSAlex ↓ 0.586 0.369 0.301 0.220 0.203 0.238
LPIPSV gg ↓ - - - 0.292 0.286 0.299

Table 7. Quantity comparison on two scenes in the ScanNet dataset [11] selected in NSVF [29]. RMSE is the Root Mean Square Error.
Our method Point-NeRF outperforms all state-of-the-art methods in all metrics by substantial margins.

sparse voxel-based neural radiance field, NSVF [29]. The
qualitative comparison is shown in Tab. 7 and visual results
are shown in Figure 8. Our Point-NeRF outperforms all
these previous studies in all metrics by substantial margins.
Please find more visual results in our video.

E. The Tanks and Temple Dataset

We also experiment Point-NeRF on the Tanks and Tem-
ples dataset [23]. we reconstruct the radiance field of five
scenes selected in NSVF [29] and compare our model with

three models NV [30], NeRF [35] and NSVF [29]. We show
the quantitative comparison in Tab. 8 and visualize quality
results in Figure 9. Please find more visual results in our
video.

F. Initializing Neural Points from COLMAP
Points

Point-NeRF can use the points of any external recon-
struction method. For instance, the output of COLMAP
[44] is a point cloud {(pi)|i = 1, ..., N}. We set γi as 0.3
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Figure 8. The qualitative results of our Point-NeRF on the ScanNet dataset [23]. The first row shows five generated test frames of scene
101 and the second row shows five generated test frames of scene 241.

Tanks & Tamples
Ignatius Truck Barn Caterpillar Family Mean

PSNR ↑
NV [30] 26.54 21.71 20.82 20.71 28.72 23.70

NeRF [35] 25.43 25.36 24.05 23.75 30.29 25.78
NSVF [29] 27.91 26.92 27.16 26.44 33.58 28.40

Point-NeRF (Ours) 28.43 28.22 29.15 27.00 35.27 29.61
SSIM ↑

NV [30] 0.992 0.793 0.721 0.819 0.916 0.848
NeRF [35] 0.920 0.860 0.750 0.860 0.932 0.864
NSVF [29] 0.930 0.895 0.823 0.900 0.954 0.900

Point-NeRF (Ours) 0.961 0.950 0.937 0.934 0.986 0.954
LPIPSAlex ↓

NV [30] 0.117 0.312 0.479 0.280 0.111 0.260
NeRF [35] 0.111 0.192 0.395 0.196 0.098 0.198
NSVF [29] 0.106 0.148 0.307 0.141 0.063 0.153

Point-NeRF (Ours) 0.069 0.077 0.120 0.111 0.024 0.080
LPIPSV gg ↓

Point-NeRF (Ours) 0.079 0.117 0.180 0.156 0.046 0.115

Table 8. Quantity comparison on five scenes in the Tanks and Temples dataset [23] selected in NSVF [29]. Our method Point-NeRF
outperforms all state-of-the-art models in all metrics by substantial margins.

in the beginning. The confidence score of valid points will
be pushed to 1 during the optimization process. To acquire
point features fi for a point, We first rule out all the views
where the point is occluded by other points, then we find the
view of which the camera is the closest to the point. Then
from that view, we can unproject the point onto the feature
maps extracted by Gf (see Figure 2(a) in the main paper)
from the selected view and obtain the fi.

G. Networks Architectures

Cost volume-based CNN Gp,γ . Our cost volume-based
CNN adopts the popular architecture of [59], which is sim-
ple and efficient. It includes three layers of depth features
extraction CNN, while the latter two layers down-samples

the spatial dimension by 4 and output a feature map with
32 channels. Then, these features from each view will be
warped according to camera pose and the variance will be
computed. The variance features will go through a narrow
U-Net [54] and output a 1-channel feature to calculate the
depth probability.

Image Feature Extraction 2D CNN Gf . The image fea-
ture extraction network takes inputs of RGB image and has
three down-sampling layers, each output feature with chan-
nels of 8, 16, 32. We extract the point features by unpro-
jecting a 3D point to each layer and taking the multi-scale
features.

Point-based Radiance Fields MLP. We visualize the de-
tails of the point feature aggregation and radiance computa-
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Figure 9. The qualitative results of our Point-NeRF on the Tanks and Temples dataset.

Figure 10. The network pipeline of radiance fields computation at a shading location x from K neural points neighbors. “PosEN” indicates
positional encoding [35]. “d3” indicates the 3 channels vector of view directions at x. The final outputs are the radiance color r and density
σ. Please also refer to the equations (3-7) in the main paper.

tion in Figure 10. In all of our experiments, we set c1 = 56,
c2 = 128. The MLPs F,R, T have 2, 3, 2 layers, respec-
tively. The intermediate feature channels of F and T are
256, and 128 channels for R.

H. Neural Point Querying
To efficiently query neural point neighbors for ray

marching, inspired by the CAGQ point query introduced
in [58], we implement a grid query method. We first trans-
form the point cloud to the perspective coordinate. Then we
build grid-point indices which register each neural point to
evenly spaced 3D grids. Since these grids in the perspec-
tive coordinate are cubic, in the world coordinate, they have
shapes of spherical voxels.

With the grid-point indices, we can discover grids that
have neural points and also their grid neighbors. These grid

neighbors are the regions of interest since there should exist
neural points within the query radius. If a ray crosses these
regions, we can place shading points inside. Finally, we
query neural points by directly retrieving the stored neural
points according to the grid-point indices.

In all of our experiments, we query 8 nearest neural point
neighbors for each shading location. Along each ray, we
only search for neural point neighbors and compute radi-
ance for shading locations in a grid that is occupied it-
self or nearby occupied grids. Therefore, our shading is
much more efficient by skipping the empty space, unlike
other radiance fields representations. This is one key advan-
tage that enables fast convergence. Even NSVF [29], high-
performance local radiance representation, has to probe the
empty space in the beginning and gradually prune the vox-
els along its training process.
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The benefit of this strategy is two-fold: First, we only
place shading points in the area that exists neural points,
so that we avoid radiance computation in the empty space.
Second, the nearby points can be efficiently retrieved ac-
cording to the indices, which substantially accelerate the
point query speed.

I. Limitations
Because we do not focus on the rendering speed and

we have not optimized our implementation (point query-
ing and point feature aggregation) for fast rendering. Al-
though, our model is naturally faster than NeRF (3X) due
to that we skip the shading in empty space. We believe fu-
ture works on combining mechanisms introduced in current
papers such as [42, 61] with our point-based radiance rep-
resentation would further benefit the neural rendering tech-
nology.
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