Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Qiangeng Xu, Yiqi Zhong, Ulrich Neumann

University of Southern California
giangenx @usc.edu, yigizhon @usc.edu, uneumann @usc.edu

TR T S e e0s

(b) LIDAR Scan 3D View with a
Ground Truth Bounding Box

) External-occlusion (red)
and Signal Miss (blue)

(e) Expected Shape Occupancy
(orange) and a BBox Prediction.

Figure 1: In a LiDAR scan (a) and (b), locating an object is difficult when its shape is largely missing. We discover three causes
of shape miss: external-occlusion (red regions in (c)), signal miss (blue regions in (c)), and self-occlusion (green regions in (d)).
BtcDet learns the occupancy probability of complete object shapes (e) and achieves the state-of-the-art detection performance.

Abstract

Advances in LiDAR sensors provide rich 3D data that sup-
ports 3D scene understanding. However, due to occlusion and
signal miss, LiDAR point clouds are in practice 2.5D as they
cover only partial underlying shapes, which poses a funda-
mental challenge to 3D perception. To tackle the challenge,
we present a novel LiDAR-based 3D object detection model,
dubbed Behind the Curtain Detector (BtcDet), which learns
the object shape priors and estimates the complete object
shapes that are partially occluded (curtained) in point clouds.
BtcDet first identifies the regions that are affected by occlu-
sion and signal miss. In these regions, our model predicts the
probability of occupancy that indicates if a region contains
object shapes. Integrated with this probability map, BtcDet
can generate high-quality 3D proposals. Finally, the probabil-
ity of occupancy is also integrated into a proposal refinement
module to generate the final bounding boxes. Extensive ex-
periments on the KITTI Dataset (Geiger et al. 2013) and the
Waymo Open Dataset (Sun et al. 2019) demonstrate the effec-
tiveness of BtcDet. Particularly, for the 3D detection of both
cars and cyclists on the KITTI benchmark, BtcDet surpasses
all of the published state-of-the-art methods by remarkable
margins. Code will be published after review.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1 Introduction

With high-fidelity, the point clouds acquired by LiDAR sen-
sors significantly improved autonomous agents’s ability to
understand 3D scenes. LIDAR-based models achieved state-
of-the-art performance on 3D object classification (Xu et al.
2020), visual odometry (Pan et al. 2021), and 3D object de-
tection (Shi et al. 2020). Despite being widely used in these
3D applications, LiDAR frames are technically 2.5D. After
hitting the first object, a laser beam will return and leave the
shapes behind the occluder missing from the point cloud.

To locate a severely occluded object (e.g., the car in Fig-
ure 1(b)), a detector has to recognize the underlying object
shapes even when most of its parts are missing. Since shape
miss inevitably affects object perception, it is important to
answer two questions:

» What are the causes of shape miss in point clouds?
» What is the impact of shape miss on 3D object detection?

1.1 Causes of Shape Miss

To answer the first question, we study the objects in KITTI
(Geiger et al. 2013) and discover three causes of shape miss.
External-occlusion. As visualized in Figure 1(c), occluders
block the laser beams from reaching the red frustums be-

&% ® § d: ¢ 100.00
oo ‘ﬁ:&,*f;‘. X ~" ;'3.'.:.‘.
® O.‘e‘:. t‘. o @ .?é'&t. ‘e®
[] @ ¢ @) ‘ ovees® .
® & 8¢ e sﬂ:o ‘m. oy X)
6. 0% S " TRY ..“‘I‘S‘ .o:‘:‘::- © o
Bt e Wiogine, S AT 4 00
Gq. ““."oo’ -.:.J? ® ;‘.. s e
oo AP R.T7 “‘_’ﬁ S o]
¥ 234 eecccc e ©°F 80.00
PaREAY "T IO ey “
coo nud e’ o ‘ . 75.00

Original LIDAR Scan
@ signal Miss

@ External Occlusion
@ self Occlusion

(a) The points to recover different shape miss regions.

95.00

90.00

85.00

99.95 99.87 99.50
97.03

97.16

95.40
93.49

96.31
91.99
90.60
84.62
82.50

Occlusion Level 0 Occlustion Level 1 Occlusion Level 2
NR ®NEO M®EO+SM ®EO+SM+SO

(b) The 3D Average Precisions with shape miss recovery.

Figure 2: The impact of the three types of shape miss. (b) shows PV-RCNN’s (Shi et al. 2020) car 3D detection APs with
different occlusion levels on the KITTI (Geiger et al. 2013) val split. NR means no shape miss recovery. EO, SM, and SO
indicate adding car points in the regions of external-occlusion, signal miss and self-occlusion, respectively, as visualized in (a).

hind them. In this situation, the external-occlusion is formed,
which causes the shape miss located at the red voxels.

Signal miss. As Figure 1(c) illustrates, certain materials and
reflection angles prevent laser beams from returning to the
sensor after hitting some regions of the car (blue voxels).
After projected to range view, the affected blue frustums in
Figure 1(c) appear as the empty pixels in Figure 1(a).
Self-occlusion. LiDAR data is 2.5D by nature. As shown in
Figure 1(d), for a same object, its parts on the far side (the
green voxels) are occluded by the parts on the near side. The
shape miss resulting from self-occlusion inevitably happens
to every object in LiDAR scans.

1.2 Impact of Shape Miss

To analyze the impact of shape miss on 3D object detec-
tion, we evaluate the car detection results of the scenarios
where we recover certain types of shape miss on each object
by borrowing points from similar objects (see the details of
finding similar objects and filling points in Sec. 3.1).

In each scenario, after resolving certain shape miss in both
the train and val split of KITTI (Geiger et al. 2013), we train
and evaluate a popular detector PV-RCNN (Shi et al. 2020).
The four scenarios are:

* NR: Using the original data without shape miss recovery.

* EO: Recovering the shape miss caused by external-
occlusion (adding the red points in Figure 2(a)).

* EO+SM: Recovering the shape miss caused by external-
occlusion and signal miss (adding the red and blue points
in Figure 2(a)).

* EO+SM+SO: Recovering all the shape miss (adding the
red, blue and green points in Figure 2(a)).

We report detection results on cars with three occlusion lev-
els (level labels are provided by the dataset). As shown in
Figure 2(b), without recovery (NR), it is more difficult to de-
tect objects with higher occlusion levels. Recovering shapes
miss will reduce the performance gaps between objects with
different levels of occlusion . If all shape miss are resolved
(EO+SM+S0), the performance gaps are eliminated and al-
most all objects can be effectively detected (APs > 99%).

1.3 The Proposed Method

The above experiment manually resolves the shape miss
by filling points into the labeled bounding boxes and sig-
nificantly improve the detection results. However, during
test time, how do we resolve shape miss without knowing
bounding box labels?

In this paper, we propose Behind the Curtain Detector
(BtcDet). To the best of our knowledge, BtcDet is the first
3D object detector that targets the object shapes affected
by occlusion. With the knowledge of shape priors, BtcDet
estimates the occupancy of complete object shapes in the
regions affected by occlusion and signal miss. After being
integrated into the detection pipeline, the occupancy estima-
tion benefits both region proposal generation and proposal
refinement. Eventually, BtcDet surpasses all of the state-of-
the-art methods published to date by remarkable margins.

2 Related Work

LiDAR-based 3D object detectors. Voxel-based meth-
ods divide point clouds by voxel grids to extract fea-
tures (Zhou and Tuzel 2018). Some of them also use
sparse convolution to improve model efficiency, e.g., SEC-
OND(Yan et al. 2018). Point-based methods such as PointR-
CNN (Shi et al. 2019a) generate proposals directly from
points. STD (Yang et al. 2019) applies sparse to dense re-
finement and VoteNet (Qi et al. 2019a) votes the proposal
centers from point clusters. These models are supervised on
the ground truth bounding boxes without explicit considera-
tion for the object shapes.

Learning shapes for 3D object detection. Bounding box
prediction requires models to understand object shapes.
Some detectors learn the shape related statistics as an aux-
iliary task. PartA2 (Shi et al. 2020) learns object part loca-
tions. SA-SSD and AssociateDet (He et al. 2020; Du et al.
2020) use auxiliary networks to preserve structural informa-
tion. SIEnet (Li et al. 2021) conducts point completion in
proposals. These models are shape-aware but overlook the
impact of occlusion on object shapes.

Occlusion handling in computer vision. The negative im-

Occlu5|on and Signal miss ROC U RSM

pact of occlusion on various computer vision tasks, includ-
ing tracking (Liu et al. 2018), image-based pedestrian detec-
tion (Zhang et al. 2018), image-based car detection (Reddy
et al. 2019) and semantic part detection (Saleh et al. 2021),
is acknowledged. Efforts addressing occlusion include the
amodal instance segmentation (Follmann et al. 2019), the
Multi-Level Coding that predicts the presence of occlusion
(Qi et al. 2019b). These studies, although focus on 2D im-
ages, demonstrate the benefits of modeling occlusion to
solving visual tasks. Point cloud visibility is addressed in
(Hu et al. 2020) and is used in multi-frame detection and
data augmentation. This method, however, does not learn
and explore the visibility’s influence on object shapes. Our
proposed BtcDet is the first 3D object detector that learns
occluded shapes in point cloud data. We compare (Hu et al.
2020)’s approach with ours in Sec. 4.3.

3 Behind the Curtain Detector

Let © denote the parameters of a detector, {p1, pa, ..., PN }
denote the LiDAR point cloud, X', D, S,, S, denote the es-
timated box center, the box dimension, the observed objects
shapes and the occluded object shapes, respectively. Most
LiDAR-based 3D object detectors (Yi et al. 2020; Chen et al.
2020; Shi and Rajkumar 2020) only supervise the bounding
box prediction. These models have

OmLE = argglaxp(X,D | {p1,p2,..,pn},©), (D)

while structure-aware models (Shi et al. 2020; He et al.
2020; Du et al. 2020) also supervise S,;’s statistics so that

®MLE = argI@naxP(X,D,Sob | {p17p27"'7pN}ﬂ®)' (2)

None of the above studies explicitly model the complete
object shapes S = S, U Sy, While the experiments in Sec.
1.2 show the improvements if S is obtained. BtcDet esti-
mates S by predicting the shape occupancy Og for regions
of interest. After that, BtcDet conducts object detection con-
ditioned on the estimated probability of occupancy P(Ogs).

Shape Occupancy ProbabllltyP(Os)

Figure 3: The detection pipeline. BtcDet first identifies the regions of occlusion and signal miss Roc U RsaIn these regions,
BtcDet estimates the shape occupancy probability P(Os) (the orangex voxels have P(Og) > 0.3). When the backbone network
U extracts detection features from the point cloud, P(Ogs) is concatenated with ¥’s intermediate feature maps. Then, a RPN
network takes the output and generates 3D proposals. For each proposal (e.g., the green box), BtcDet pools the local geometric
features fye, to the nearby grids and finally generate the final bounding box prediction (the red box) and the confidence score.

Proposal Reflnement

The optimization objectives can be described as follows:
argglaXP(OS | {p17p27"'7pN}aRSM>ROCa®)a (3)
argr@naxP(X,D | {p1,p2,---, 0N}, P(Os),0). 4)

Model overview. As illustrated in Figure 3, BtcDet first
identifies the regions of occlusion Roc and signal miss
Rsm, and then, let a shape occupancy network {2 estimate
the probability of object shape occupancy P(Os). The train-
ing process is described in Sec. 3.1.

Next, BtcDet extracts the point cloud 3D features by a
backbone network W. The features are sent to a Region Pro-
posal Network (RPN) to generate 3D proposals. To leverage
the occupancy estimation, the sparse tensor P(Og) is con-
catenated with the feature maps of . (See Sec. 3.2.)

Finally, BtcDet applies the proposal refinement. The lo-
cal geometric features fg., are composed of P(Os) and
the multi-scale features from W. For each region proposal,
we construct local grids covering the proposal box. BtcDet
pools the local geometric features fqc, onto the local grids,
aggregates the grid features, and generates the final bound-
ing box predictions. (See Sec. 3.3.)

3.1 Learning Shapes in Occlusion

Approximate the complete object shapes for ground
truth labels. Occlusion and signal miss preclude the knowl-
edge of the complete object shapes S. However, we can as-
semble the approximated complete shapes S, based on two
assumptions:

* Most foreground objects resemble a limited number of
shape prototypes, e.g., pedestrians share a few body types.

» Foreground objects, especially vehicles and cyclists, are
roughly symmetric.

We use the labeled bounding boxes to query points belong-
ing to the objects. For cars and cyclists, we mirror the object
points against the middle section plane of the bounding box.

occlusion or signal miss Roc URsam Bl contains object shapes Og =1 no object shapes Os=0 @3 P(0s)>0.3

@P(Osk 0.3

:'(’)5 Approximated g
' Complete Shapes *

P(0s)=0.13 056 0.93

o

' Spherical 3D
! Sparse-Conv

Q

(c) Shape Occupancy Net

(a) Identify Occlusion and Signal Miss (b) Create Training Targets (d) Shape Occupancy Probability P(Os)

Figure 4: Learning Occluded Shapes. (a) The regions of occlusion or signal miss Roc U Rsaq can be identified after the
spherical voxelization for the point cloud. (b) To label the occupancy Oz (1 or 0), We place the approximated complete object

shapes S (red points) in the corresponding boxes. (c) A shape occupancy network €2 predicts the shape occupancy probability
P(Os) for voxels in Roc U Rsaq , supervised by Os. (d) Voxels are colored orange if it has a prediction P(Os) > 0.3.

A heuristic H(A, B) is created to evaluate if a source ob-
ject B covers most parts of a target object A and provides
points that can fill A’s shape miss. To approximate A’s com-
plete shape, we select the top 3 source objects By, Ba, B
with the best scores. The final approximation S consists of
A’s original points and the points of By, B, Bs that fill A’s
shape miss. Please find details of (A, B) in Appendix B
and more visualization of assembling S in Appendix G.

Approximated

Target Object
Complete Shape

Source Object ——,> Mirrored

R Top match <
Figure 5: Assemble the approximated complete shape S for
an object (blue) by using points from top match objects.

Identify R o¢c U Rsq in the spherical coordinate system.
According to our analysis in Sec. 1.1, “shape miss” only ex-
ists in the occluded regions R ¢ and the regions with signal
miss Rsaq (see Figure 1(c) and (d)). Therefore, we need to
identify Roc U Rsa before learning to estimate shapes.
In real-world scenarios, there exists at most one point in
the tetrahedron frustum of a range image pixel. When the
laser is stopped at a point, the entire frustum behind the point
is occluded. We propose to voxelize the point cloud using
an evenly spaced spherical grid so that the occluded regions
can be accurately formed by the spherical voxels behind any
LiDAR point. As shown in Figure 4(a), each point (z, y, 2)
is transformed to the spherical coordinate system as (7, ¢, 6):

r=+/(z?+y?+22), ¢=arctan2(y,z), (5)
0 = arctan2(z, v/ 2% + y?).

Roc includes nonempty spherical voxels and the empty
voxels behind these voxels. In Figure 1(a), the dashed lines
mark the potential areas of signal miss. In range view, we
can find pixels on the borders between the areas having Li-
DAR signals and the areas of no signal. R, is formed by

the spherical voxels that project to these pixels.

Create training targets. In Roc U Rsaq , we predict the
probability P(Ogs) for voxels if they contain points of S. As
illustrated in 4(b), S are placed at the locations of the cor-
responding objects. We set O5 = 1 for the spherical voxels

that contain S, and Oz = 0 for the others. Oz is used as
the ground truth label to approximate the occupancy Og of
the complete object shape. Estimating occupancy has two
advantages over generating points:

« S is assembled by multiple objects. The shape details ap-
proximated by the borrowed points are inaccurate and the
point density of different objects is inconsistent. The oc-
cupancy O avoids these issues after rasterization.

* The plausibility issue of point generation can be avoided.

Estimate the shape occupancy. In R oc UR s, We encode
each nonempty spherical voxel with the average properties
of the points inside (X,y,z,feats), then, send them to a shape
occupancy network (2. The network consists of two down-
sampling sparse-conv layers and two up-sampling inverse-
convolution layers. Each layer also includes several sub-
manifold sparse-convs (Graham and van der Maaten 2017)
(see Appendix D). The spherical sparse 3D convolutions are
similar to the ones in the Cartesian coordinate, except that
the voxels are indexed along (7, ¢, 8). The output P(Os)
is supervised by the sigmoid cross-entropy Focal Loss (Lin
et al. 2017):

Loca(po) = =(1 = po)log(py), ®)
P(Os) if Oz =1 at voxel v
h v = S
e {1 —P(Os) otherwise,
Lahane = Y veRocURsm Wo o Locat(Pv) o
' [Roc URsm| ’

where w, = 0 ifve regions of shape miss

1 otherwise.

Since S borrows points from other objects in the shape miss
regions, we assign them a weighting factor §, where § < 1.

3.2 Shape Occupancy Probability Integration

Trained with the customized supervision, €2 learns the shape
priors of partially observed objects and generates P(Ogs).
To benefit detection, P(Ogs) is transformed from the spher-
ical coordinate to the Cartesian coordinate and fused with
W, a sparse 3D convolutional network that extracts detection
features in the Cartesian coordinate..

For example, a spherical voxel has a center (r, ¢, §) which
is transformed as x = rcosfcos¢, y = rcosfsing, z =
rsinf. Assume z,y,z is inside a Cartesian voxel v*7-*.
Since several spherical voxels can be mapped to v®7F, p#3:F
takes the max value of these voxels SV (v"7F):

P(Os)yise = maz({P(Os)sy : sv € SV (0HF)}). (8)
The occupancy probability of these Cartesian voxels forms
a sparse tensor map P(Os)1 = {P(Os),}, which is, then,
down-sampled by max-poolings into multiple scales and
concatenated with U’s intermediate feature maps:

\’I," = [\ffi‘fl, mawpoolxigl(’P(OS)J_)}, 9)

where fi, fo** and mazxpool /5 *(-) denote the input fea-

tures of U’s ¢th layer, the output features of U’s ¢ — 1th layer,
and applying stride-2 maxpooling 7 — 1 times, respectively.
The Region Proposal Network (RPN) takes the output fea-
tures of U and generates 3D proposals. Each proposal in-
cludes (zp, Yp, 2p); (Lp, Wp, hp), 0p, Dp, namely, center loca-
tion, proposal box size, heading and proposal confidence.

3.3 Occlusion-Aware Proposal Refinement

Local geometry features. BtcDet’s refinement module fur-
ther exploits the benefit of the shape occupancy. To obtain
accurate final bounding boxes, BtcDet needs to look at the
local geometries around the proposals. Therefore, we con-
struct a local feature map fye, by fusing multiple levels of
U’s features. In addition, we also fuse P(Og) | into fgeo
to bring awareness to the shape miss in the local regions.
P(Os) 1 provides two benefits for proposal refinement:

* P(Os). only has values in Rpoc U Rsaq so that it can
help the box regression avoid the regions outside Rp¢ U
Rsm, e.g., the regions with cross marks in Figure 3.

* The estimated occupancy indicates the existence of unob-
served object shapes, especially for empty regions with
high P(Os) , e.g., some orange regions in Figure 3.

fgeo is a sparse 3D tensor map with spatial resolution of

400 x 352 x 5. The process for producing fg¢, is described

in Appendix D.

Rol pooling. On each proposal, we construct local grids
which have the same heading of the proposal. To expand
the receptive field, we set a size factor u so that:

Wyrid = M+ Wp, lgrid = lpa hgm'd =u- hp' (10)
The grid has a dimension of 12 x 4 x 2. We pool the
nearby features fg., onto the nearby grids through trilinear-
interpolation (see Figure 3) and aggregates them by sparse
3D convolutions. After that, the refinement module predicts
an IoU-related class confidence score and the residues be-

tween the 3D proposal boxes and the ground truth bounding
boxes, following (Yan et al. 2018; Shi et al. 2020).

3.4 Total Loss

The RPN loss L,,, and the proposal refinement loss Ly,
follow the most popular design among detectors (Shi et al.
2020; Yan et al. 2018). The total loss is:

Etotal = 0-3£shape + Erpn + Epr- (11)

More details of the losses and the network architectures can
be found in Appendix C and D.

4 Experiments

In this section, we describe the implementation details of
BtcDet and compare BtcDet with state-of-the-art detectors
on two datasets: the KITTI Dataset (Geiger et al. 2013) and
the Waymo Open Dataset (Sun et al. 2019). We also con-
duct ablation studies to demonstrate the effectiveness of the
shape occupancy and the feature integration strategies. More
detection results can be found in the Appendix F. The quan-
titative and qualitative evaluations of the occupancy estima-
tion can be found in the Appendix E and H.

Datasets. The KITTI Dataset includes 7481 LiDAR frames
for training and 7518 LiDAR frames for testing. We fol-
low (Chen et al. 2017) to divide the training data into a
train split of 3712 frames and a val split of 3769 frames.
The Waymo Open Dataset (WOD) consists of 798 segments
of 158361 LiDAR frames for training and 202 segments
of 40077 LiDAR frames for validation. The KITTI Dataset
only provides LiDAR point clouds in 3D, while the WOD
also provides LiDAR range images.

Implementation and training details. BtcDet transforms
the point locations (x,y,z) to (r,¢,0) for the KITTI
Dataset, while directly extracting (7, ¢, 6) from the range
images for the WOD. On the KITTI Dataset, we use a
spherical voxel size of (0.32m,0.52°,0.42°) within the
range [2.24m,70.72m] for r, [—40.69°,40.69°] for ¢
and [—16.60°,4.00°] for . On the WOD, we use a
spherical voxel size of (0.32m,0.81°,0.31°) within the
range [2.94m,74.00m] for r, [—180°,180°] for ¢ and
[—33.80°,6.00°] for 6. Determined by grid search, we set
v =2inEq.16, 5 = 0.2 in Eq.7 and x = 1.05 in Eq.10.

In all of our experiments, we train our models with a
batch size of 8 on 4 GTX 1080 Ti GPUs. On the KITTI
Dataset, we train BtcDet for 40 epochs, while on the WOD,
we train BtcDet for 30 epochs. The BtcDet is end-to-end
optimized by the ADAM optimizer (Kingma and Ba 2014)
from scratch. We applies the widely adopted data augmen-
tations (Shi et al. 2020; Deng et al. 2020; Lang et al. 2019;
Yang et al. 2020; Ye et al. 2020), which includes flipping,
scaling, rotation and the ground-truth augmentation.

4.1 Evaluation on the KITTI Dataset

We evaluate BtcDet on the KITTI val split after training it
on the train split. To evaluate the model on the KITTI test
set, we train BtcDet on 80% of all train+val data and hold
out the remaining 20% data for validation. Following the
protocol in (Geiger et al. 2013), results are evaluated by the
Average Precision (AP) with an IoU threshold of 0.7 for cars
and 0.5 for pedestrians and cyclists.

Method Car 3D APR40 Ped. 3D APR40 CyC. 3D APR40 3D APRH
Easy Mod. Hard | Easy Mod. Hard | Easy Mod. Hard | Car Mod.
PointPillars (Lang et al. 2019) 87.75 7839 75.18 | 5730 5141 46.87 | 81.57 6294 58098 77.28
SECOND (Yan et al. 2018) 90.97 7994 77.09 | 58.01 51.88 47.05 | 7850 56.74 52.83 76.48
SA-SSD (He et al. 2020) 9223 8430 81.36 - - - - - - 79.91
PV-RCNN (Shi et al. 2020) 92.57 84.83 82.69 | 6426 56.67 5191 | 88.88 7195 66.78 83.90
Voxel R-CNN (Deng et al. 2020) | 92.38 85.29 82.86 - - - - - - 84.52
BtcDet (Ours) 93.15 86.28 83.86 | 69.39 61.19 5586 | 9145 74.70 70.08 86.57

Table 1: Comparison on the KITTI val set, evaluated by the 3D Average Precision (AP) under 40 recall thresholds (R40). The
3D APs on under 11 recall thresholds are also reported for the moderate car objects.

. Car 3D APgryo Cyc. 3D APRyo
Method Reference Modality Easy Mod. Hard mAP | Easy Mod. Hard mAP
EPNet (Huang et al. 2020) ECCV 2020 LiDAR+RGB | 89.81 79.28 74.59 81.23 - - - -
3D-CVF (Yoo et al. 2020) ECCV 2020 LiDAR+RGB | 89.20 80.05 73.11 80.79 - - - -
PointPillars (Lang et al. 2019) CVPR 2019 LiDAR 82.58 7431 6899 7529 | 77.10 58.65 51.92 62.56
STD (Yang et al. 2019) ICCV 2019 LiDAR 8795 79.71 75.09 80.92 | 78.69 61.59 5530 65.19
HotSpotNet (Chen et al. 2020) ECCV 2020 LiDAR 87.60 7831 7334 79.75 | 8259 6595 59.00 69.18
PartA? (Shi et al. 2020) TPAMI 2020 LiDAR 87.81 7849 7351 7994 | 79.17 6352 5693 66.54
3DSSD (Yang et al. 2020) CVPR 2020 LiDAR 88.36 79.57 7455 80.83 | 82.48 64.10 5690 67.83
SA-SSD (He et al. 2020) CVPR 2020 LiDAR 88.75 79.79 7416 80.90 - - - -
Asso-3Ddet (Du et al. 2020) CVPR 2020 LiDAR 8599 7740 7053 77.97 - - - -
PV-RCNN (Shi et al. 2020) CVPR 2020 LiDAR 90.25 8143 76.82 8283 | 78.60 63.71 57.65 66.65
Voxel R-CNN (Deng et al. 2020) | AAAI 2021 LiDAR 90.90 81.62 77.06 83.19 - - - -
CIA-SSD (Zheng et al. 2021) AAAI 2021 LiDAR 89.59 80.28 72.87 80.91 - - - -
TANet (Liu et al. 2020) AAAI 2021 LiDAR 8381 7538 67.66 7562 | 73.84 59.86 5346 62.39
BtcDet (Ours) - LiDAR 90.64 82.86 78.09 83.80 | 82.81 68.68 61.81 71.10
Improvement - - -0.26 +1.24 +094 +0.67 | +0.33 +2.73 +2.81 +1.92

Table 2: Comparison on the KITTI zest set, evaluated by the 3D Average Precision (AP) of 40 recall thresholds (R40) on the
KITTI server. BtcDet surpasses all the leader board front runners that are associated with publications released before our
submission. The mAPs are averaged over the APs of easy, moderate, and hard objects. Please find more results in Appendix F.

KITTI validation set. As summarized in Table 1, we com-
pare BtcDet with the state-of-the-art LiDAR-based 3D ob-
ject detectors on cars, pedestrians and cyclists using the AP
under 40 recall thresholds (R40). We reference the R40 APs
of SA-SSD, PV-RCNN and Voxel R-CNN to their papers,
the R40 APs of SECOND to (Pang et al. 2020) and the
R40 APs of PointRCNN and PointPillars to the results of
the officially released code. We also report the published
3D APs under 11 recall thresholds (R11) for the moder-
ate car objects. On all object classes and difficulty lev-
els, BtcDet outperforms models that only supervise bound-
ing boxes (Eq.1) as well as structure-aware models (Eq.2).
Specifically, BtcDet outperforms other models by 2.05% 3D
R11 AP on the moderate car objects, which makes it the first
detector that reaches above 86% on this primary metric.

KITTI test set. As shown in Table 2, we compare BtcDet
with the front runners on the KITTI test leader board. Be-
sides the official metrics, we also report the mAPs that av-
erage over the APs of easy, moderate, and hard objects. As
of May. 4th, 2021, compared with all the models associated
with publications, BtcDet surpasses them on car and cyclist
detection by big margins. Those methods include the mod-
els that take inputs of both LIDAR and RGB images and the
ones taking LiDAR input only. We also list more compar-
isons and the results in Appendix F.

4.2 Evaluation on the Waymo Open Dataset

We also compare BtcDet with other models on the Waymo
Open Dataset (WOD). We report both 3D mean Aver-
age Precision (mAP) and 3D mAP weighted by Heading
(mAPH) for vehicle detection. The official metrics also
include separate mAPs for objects belonging to different
distance ranges. Two difficulty levels are also introduced,
where the LEVEL_1 mAP calculates for objects that have
more than 5 points and the LEVEL_2 mAP calculates for
objects that have more than 1 point.

As shown in Table 3, BtcDet outperforms these state-of-
the-art detectors on all distance ranges and all difficulty lev-
els by big margins. BtcDet outperforms other detectors on
the LEVEL_1 3D mAP by 2.99% and the LEVEL 2 3D
mAP by 3.51%. In general, BtcDet brings more improve-
ment on the LEVEL_2 objects, since objects with fewer
points usually suffer more from occlusion and signal miss.
These strong results on WOD, one of the largest published
LiDAR datasets, manifest BtcDet’s ability to generalize.

4.3 Ablation Studies

We conduct ablation studies to demonstrate the effectiveness
of the shape occupancy and the feature integration strategies.
All model variants are trained on the KITTI train split and
evaluated on the val split.

LEVEL_1 3D mAP mAPH LEVEL_2 3D mAP mAPH
Method Overall 0-30m 30-50m 50m-Inf Overall | Overall 0-30m 30-50m 50m-Inf Overall
PointPillar (Lang et al. 2019) 56.62 81.01 51.75 27.94 - - - - - -
MVF (Zhou et al. 2020b) 6293 86.30 60.02 36.02 - - - - - -
SECOND (Yan et al. 2018) 72.27 - - - 71.69 63.85 - - - 63.33
Pillar-OD (Wang et al. 2020) 69.80 88.53 66.50 42.93 - - - - - -
AFDet (Ge et al. 2020) 63.69 87.38 62.19 29.27 - - - - - -
PV-RCNN (Shi et al. 2020) 70.30 9192 69.21 42.17 69.69 6536 9158 65.13 36.46 64.79
Voxel R-CNN (Deng et al. 2020) | 75.59 9249 74.09 53.15 - 66.59 91.74 67.89 40.80 -
BtcDet (ours) 78.58 96.11 77.64 54.45 78.06 70.10 9599 70.56 43.87 69.61

Table 3: Comparison for vehicle detection on the Waymo Open Dataset validation set.

Model Learned Integrated 3D APri1 Model Integrate Integrate Proposal bbox Final bbox
Variant Features Features Car Mod. Variant Layersof ¥ fgeo 3D APri11 3D APgr1
BtcDet; (base) — — 83.71 BtcDet; (base) — — 77.75 83.71
BtcDet2 - Roc URsm 84.01 BtcDets - v 77.73 84.50
BtcDets P(Os)1 P(Os) L 86.03 BtcDetg 1,2 — 78.97 85.72
BtcDety P(Os)e 1(P(Os)1 > 0.5) 85.59 BtcDetr 1 v 78.54 85.73
BtcDet (main) P (Os)o P(Os) 1 86.57 BtcDetg 1,2,3 v 78.76 86.11
BtcDet (main) 1,2 Ve 78.93 86.57

Table 4: Ablation studies on the learned features (Sec. 3.1)
and the features fused into ¥ and f,., (Sec. 3.2). BtcDet,
directly use a binary map that labels Rpoc URsa- © and L
indicate the spherical and the Cartesian coordinate. The “1”
operator converts float values to binary codes with a thresh-
old of 0.5. All variants share the same architecture.

Shape Features. As shown in Table 4, we conduct ablation
studies by controlling the shape features learned by) and
the features used in the integration. All the model variants
share the same architecture and integration strategies.
Similarly to (Hu et al. 2020), BtcDet; directly fuses the
binary map of. Roc U Rsn into the detection pipeline. Al-
though the binary map provides the information of occlu-
sion, the improvement is limited since that the regions with
code 1 are mostly background regions and less informative.
BtcDet; learns P(Og) | directly. The network 2 predicts
probability for Cartesian voxels. One Cartesian voxel will
cover multiple spherical voxels when being close to the sen-
sor, and will cover a small portion of a spherical voxel when
being located at a remote distance. Therefore, the occlusion
regions are misrepresented in the Cartesian coordinate.
BtcDet, convert the probability to hard occupancy, which
cannot inform the downstream branch if a region is less
likely or more likely to contain object shapes.
These experiments demonstrate the effectiveness of our
choices for shape features, which help the main model im-
prove 2.86 AP over the baseline BtcDet; .

Integration strategies. We conduct ablation studies by
choosing different layers of ¥ to concatenate with P(Og) |
and whether to use P(Os), to form fye,. The former
mostly affects the proposal generation, while the latter af-
fects proposal refinement.

In Table 5, the experiment on BtcDets shows that we can
improve the final prediction AP by 0.8 if we only integrate
P(Ogs) . for proposal refinement. On the other hand, the ex-
periment on BtcDetg shows the integration with ¥ alone can
improve the AP by 1.2 for proposal box and final bounding

Table 5: Ablation studies on which layers of W are fused
with P(Os)1 (Eq. 9) and whether to fuse P(Os) into
fgeo. We evaluate on the KITTI’s moderate car objects and
show the 3D A Pg1; of the proposal and final bounding box.

box prediction AP by 2.0 over the baseline.

The comparisons of BtcDet;, BtcDetg and BtcDet (main)
demonstrates integrating P(Og) . with U’s first two layers
is the best choice. Since P(Os) is a low level feature while
the third layer of ¥ would contain high level features, we ob-
serve a regression when BtcDetg also concatenates P(Ogs) |
with U’s third layer.

These experiments demonstrate both the integration with
V¥ and the integration to form f,¢, can bring improvement
independently. When working together, two integrations fi-
nally help BtcDet surpass all the state-of-the-art models.

5 Conclusion and Future Work

In this paper, we analyze the impact of shape miss on 3D
object detection, which is attributed to occlusion and sig-
nal miss in point cloud data. To solve this problem, we
propose Behind the Curtain Detector (BtcDet), the first 3D
object detector that targets this fundamental challenge. A
training method is designed to learn the underlying shape
priors. BtcDet can faithfully estimate the complete object
shape occupancy for regions affected by occlusion and sig-
nal miss. After the integration with the probability estima-
tion, both the proposal generation and refinement are signif-
icantly improved. In the experiments on the KITTI Dataset
and the Waymo Open Dataset, BtcDet surpasses all the pub-
lished state-of-the-art methods by remarkable margins. Ab-
lation studies further manifest the effectiveness of the shape
features and the integration strategies. Although our work
successfully demonstrates the benefits of learning occluded
shapes, there is still room to improve the model efficiency.
Designing models that expedite occlusion identification and
shape learning can be a promising future direction.

Appendix

A Data and Code License

The datasets we use for experiments are the KITTI
Dataset (Geiger et al. 2013) and the Waymo Open
Dataset (Sun et al. 2019). Both of them are well-known and
licensed for academic research.

We license our code under “Apache License 2.0”. The
code will be released.

B Heuristic for Source Object Selection

To approximate the complete object shapes for a target ob-
ject A, a heuristic (A, B) is created to evaluate if a source
object B covers most of A and can provides points in the
regions of A’s shape miss. The lower the score, the better a
object B is for A. The heuristic is:

MH(A,B)= Y min ||z — y|| — adoU(D4, D) (12)

IEPA

+ ﬁ/|{x cx € Vox(Pg),x ¢ Voac(PA)}|,

where P4 and Pp are the object point sets and D4 and Dp
are their bounding boxes.

* The first term » . p mingepy, || — y|| measures if A’s
points are well covered by B’s points (half Chamfer Dis-
tance).

* The second term aloU (D4, D) measures the similarity
of their bounding box size.

* The third term 3/|{z : @ € Vox(Pp),z ¢ Vox(Pa)}|
measures the number of extra voxels that B can add to A.

C Training Target and Loss
C.1 Region Proposal Network (RPN)

We follow the most popular RPN design of anchor-based 3D
detection models (Lang et al. 2019; Yan et al. 2018; Shi et al.
2020; Deng et al. 2020).

To generate region proposals, for each class, we first set
anchor size as the size of the average 3D objects, and set
anchor orientations at 0° and 90°. Then, we We adopt the
box encoding for RPN, which is introduced in (Lang et al.
2019; Yan et al. 2018):

Ty — Tq — Ya Zg — Ra
xtnga; ytz%, ZtZgTav
where d, = (la2 +we?) ; 13)
w l h
wy = log(w—g), l; = log(lﬁ)7 hy = log(-2),
9,5 == 95] - 90,7 (14)

where x,y, z are the box centers, w, [, h and 6 are width,
length, height and yaw angle of the boxes, respectively. The

subscripts ¢, a, g denote encoded value, anchor and ground
truth, respectively.

Car (KITTI) or vehicle (WOD) anchors are assigned to
ground-truth objects if their IoUs are above 0.6 (f;, = 1)
or treated as in background if their IoUs are less than 0.45
(fg = 0). The anchors with IoUs in between are ignored
in training. For pedestrians and cyclists, the foreground ob-
ject matching threshold is 0.5 and the background matching
threshold is 0.35.

To deal with adversarial angle problem (the orientation at
0 or), we follow (Yan et al. 2018) and set the regression
loss for orientation as:

,Cfpn = SmoothL1(sin(8, — 0;)), (15)

[T 1]

where “p” indicates the predicted value. Since the above loss
treats opposite directions indistinguishably, a direction clas-
sifier is also used and supervised by a softmax loss L ;..

We use Focal Loss (Lin et al. 2017) as the classification
loss:

L5 = Liocar(pr) = —ar(1 —p)log(p), (16)
Dp if the box are assigned

to a foreground object f, =1
1—p, otherwise,

where p, =

in which p,, is the predicted foreground score. The parame-
ters of the focal loss are a = 0.25 and v = 2. The total loss
of RPN is:

Lom = Z s, +1(4, > 1) (17)
2L+ L5) +0.2L7570]

where N, is the number of sampled anchors, 1(f, > 1)
means the regression losses are only applied on the fore-
ground anchors, £779 is the SmoothL regression loss on
the encoded x,y,z,w,l,h as described in Eq.13 and Eq.14 and
Effg;, is the direction classification loss for predicting the an-

gle bin.

C.2 Proposal Refinement

Following (Jiang et al. 2018; Li et al. 2019; Yan et al. 2018;
Shi et al. 2020; Shi et al. 2020; Deng et al. 2020), there are
two branches in the proposal refinement module, one for
class confidence score and another for box regression. We
follow (Jiang et al. 2018; Shi et al. 2020; Li et al. 2019; Shi
et al. 2019b) and adopt the 3D IoU weighted Rol confidence
training target for each Rol:

1 if ToU > 0.75,
yg=12-IoU — 0.5 if0.25 < IoU <0.75, (18)
0 if ToU < 0.25,

To conduct regression for bounding box refinement, We
adopt the state-of-the-art residual-based box encoding func-
tions:

_ Ty~ Tp _ Y9~ Y _ e "%
xr - dp) yT dp b Z’(‘ hp b)
with d, = \/ (1, +wp?) ; (19)
l h
wy = log(—2), 1. =log(-2), h, =log(-2),
P by p
0, =0, —0,, (20)

where x, ¥, z are the box centers, w, [, h and # are the width,
length, height and yaw angle of the boxes, respectively. The
subscripts 7, p, g denote residue, 3D proposal and ground
truth, respectively.

The total proposal refinement loss are:

L -t i [L:C“+ 1)
T N, i pr

1(IoU > 0.55) - (LD, + L19)],

where NN,, is the number of sampled proposal, ,Cglf is the
binary cross entropy loss using the training targets Eq.21,
1(IoU > 0.55) means we only apply regression loss on
positive proposals, ,Cf)r and L7709 are similar to the corre-
sponding regression losses in the RPN.

C.3 Total Loss

The total loss is the combination of Lgpqpe introduced in
Section 3.1 of the main paper, the RPN loss £,,,, and the
proposal refinement loss £,

‘Ctotal = 0-3£5hape + Erpn + Epra (22)

where we conduct grid search and find the weighting factor
of 0.3 helps BtcDet achieve the best results.

D Network Architecture

In this section, we describe the network architecture of the
shape occupancy network, the detection feature backbone
network, the region proposal network, and the proposal re-
finement network of BtcDet.

D.1 Shape Occupancy Network ()

As visualized in Figure 6, we use a lightweight spherical
sparse 3D convolution network with five sparse-conv layers.
Two of them are down-sampling and two of them are up-
sampling layers, each consists of a regular sparse-conv of
stride 2 following by a sub-manifold sparse-conv (Graham
and van der Maaten 2017). The dimensions of these layers’
output features are 16, 32, 64, 32, and 32, respectively.

D.2 Detection Backbone Network ¥

The backbone of the detection feature extraction network
follows (Shi et al. 2020; Deng et al. 2020) but has thin-
ner network layers. The point cloud is voxelized into Carte-
sian voxels where the features of each occupied voxel are

the mean of the points’ xyz and features (e.g., intensity).
Besides, the sparse probability tensor of object occupancy
in the spherical coordinate has been transformed to the
Cartesian coordinate P(Og) 1, so that two channels from
P(Os) . can be concatenated with layers of ¥. One chan-
nel holds the occupancy probability P(Ogs) and the other
holds the binary code if P(Og) exists in a voxel. As visual-
ized in Figure 7, three down-sampling layers down-sample
the features to 8 x smaller, which are fed into the region pro-
posal network. The feature maps of the second, the third, and
the final layer are further integrated with P(Og) to form
a local geometric feature f4c,, which supports the proposal
refinement.

D.3 Region Proposal Network

We stack the input features to bird-eye view 2D features.
Then, a thinner version of the 2D convolution networks in
(Lang et al. 2019; Yan et al. 2018) propagates the features
and output residues of 2 anchors per class per grid on the
output feature maps. Instead of dimensions of 256 as in (Shi
et al. 2020; Deng et al. 2020), the intermediate feature maps
in our 2D convolution networks has feature dimension of
128.

D.4 Proposal Refinement Network

A local grid of a region proposal has a grid size of (2, 4,
12) along the locally orientated axis of Z, Y, X. As shown
in Figure 8, the aggregation network of the pooled local
geometric features consist of three layers with the strides
of (1,1,2), (1,2,2), (2,2,3). The first two layers have zero
paddings, while the last layer does not. After that, we send
them to several fully connected layers.

We have 3 x 3 x 3 this kind of local grids for each pro-
posal box. The center of a local grid (2grid, Ygrid, Zgrid)
have a shift away from the proposal center (z, yp, 2p) by
distances (A, € {£X,0} x wp, Ay = {£X, 0} x [, A, =
{£A,0} x hy), where wy, I, h, is the width, length and
height of the proposal box. We find A = 0.25 achieves
the best results. The proposal refinement network aggre-
gates results from all these shifted local grids and outputs
the residues regression and the class confidence score, which
lead to the final bounding box predictions.

E Occupancy Estimation of Complete Object
Shapes

We show the evaluation of the occupancy estimation in Table
6. The results are averaged among all voxels in the regions of
Roc U Rsnm. A prediction is considered positive if P(Ogs)
> threshold. The metrics we evaluate are precision, recall,
F1 score, accuracy, and object coverage. The object cover-
age is the percentage of all bounding boxes that contain at
least one positive voxel (P(Og) > threshold). We show the
measures on three thresholds of 0.3, 0.5, and 0.7. The accu-
racy results under all thresholds are very high (;99%) since
the classes are extremely imbalanced. However, no matter
under which threshold, we can achieve relatively high object
coverage, which means the estimation is faithful enough for
RPN and other downstream networks to rely on.

stride: 1x1x1 . tride: 2x2x2
out dim * 16 stride: 2x2x2 stride: 2x2x2 stride: 2x2x2 sinas: sxex

1| kernel: 3x3x3 - out dim : 64 utaim - kernel: 3x3x3 | Sub-manifold

i / kernel: 3x3x3 | arnel: 3x3x3 kernel: 3x3x3 : sparse-conv
I
|
1
|
1
: 1
stride: 1x1x1 ‘ // .

A - stride: 1x1x1 out dim : 64 stride: 1x1x1 - | Sparse-cony _ Inverse
i outdim:32 kernel: 3x3x3 out dim : 32 stride: 1x1x1 sparse-conv

kernel: 3x3x3 kernel: 3x3x3 outdim:32

kernel: 3x3x3
Figure 6: The network architecture of the shape occupancy network. The blue layers are regular sparse 3D convolutions (Graham

2015), the purple layers are sub-manifold sparse 3D convolutions (Graham and van der Maaten 2017), while the green layers
are inverse sparse 3D convolutions (spatial up-sampling).

B B :

:’u':‘ o e :

: . - ERR LRI PIEPTIEp

"’) SR L ': .

ki - > . .

LA [h
concat concat

stride: 2x2x2

h y .
out dim: 32 stride: 2x2x2 :
. tride: 2x2x2
: kernel: 3x3x3 im: °
’ ernel. oxox out d”’f’- 64 out dim: 64
" kernel: 3x3x3 kernel: 3x3x3
fri

! 20

L ™ —> — —» ToRPN
[stride: 1x1x1
"‘ out dim: 64
stride: 1x1x1 kernel: 3x3x3
stride: 1x1x1 .
1 dim: 32 out dim: 64
N LA out dim: kernel: 3x3x3
! stride: 1x1x1 kernel: 3x3x3 f
: im: > > €o
A A (k)Ut le;g 3 stride: 2x2x2 g
e e out dim: 32 o
kernel: 3x3x3 stride: 2x2x2 stndg 1x1x1
) out dim: 64 out dim: 128
kernel: 3x3x3 kernel: 3x3x3
concat
g
—> —_— BT
m :; A o\

Figure 7: The architecture of the detection feature backbone network. The blue layers are the regular sparse 3D convolu-
tions (Graham 2015) and the purple layers are sub-manifold sparse 3D convolutions (Graham and van der Maaten 2017).

F More Comparison Results on the KITTI age point number in pedestrians is smaller than other ob-
Test Set jects, the shape estimation is sensitive to a few observed
We show more results of comparisons between BtcDet and points. Therefore, if the point number distribution of pedes-

other state-of-the-art detectors in Table 7. Because the aver-

stride: 1x1x2)
out dim: 128 stride: 1x2x2

kernel: 3x3x3 outdim: 128 stride: 2x2x3
kernel: 3x3x3 out dim: 128

kernel: 2x2x3
(No padding)

other grids

- Class score

¥ X

- Box residues

Figure 8: The architecture of the proposal refinement network in BtcDet’s detection pipeline. The blue layers are the regular
sparse 3D convolutions (Graham 2015) and the yellow layers are fully-connected layers. The stride numbers correspond to Z,

F1 Score Accuracy Object Coverage

Y, X axis.
Threshold | Precision Recall
0.3 39.8 % 94.2 %
0.5 60.0 % 81.9 %
0.7 80.9 % 47.0 %

55.1 %
68.3 %
58.6 %

99.6 % 95.6 %
99.7 % 94.0 %
99.8 % 84.0 %

Table 6: The results of occupancy estimation. The model is trained on the KITTT’s train split and then evaluated on the KITTI’s
val split. The precision, recall, F1 score, accuracy and object coverage are evaluated by setting P(Og) > the corresponding
thresholds. Those metrics are evaluated considering all voxels in Rpc U Rs . The object coverage is the the percentage of all
bounding boxes that contain at least one voxel that is predicted as positive.

trians in the test split is different, our model may not be able
to provide an accurate shape occupancy estimation. As a re-
sult, BtcDet’s pedestrian detection on KITTT’s test split does
not perform as well as on KITTI’s val split. We consider im-
proving the results with this situation in our future works.

G More Visualization for the Complete
Object Shape Approximation

We show more results of the assembled complete object
shapes of cyclists and pedestrians in this section. Figure 9
visualizes the process for cyclists which includes mirroring
both source and target objects. Figure 10 and 11 visualizes
the process for pedestrians which does not mirror the objects
since pedestrians are less likely to be symmetric. The blue
points are the points of the target object and the red points
are the points of the source objects. The assembled object
faithfully covers the originally partially observed parts of the
target objects and provides reasonable recovery points in the
shape miss regions of the target objects.

H Visualization of the Occupancy
Probability P(Os)

We show the qualitative results of the occupancy probability
for vehicle objects on the Waymo Open Dataset (Sun et al.
2019). Figure 12 contains zoomed in views of the occupancy
probability while Figure 13 contains full scene views. The

higher probability one is estimated, the larger opacity we
apply to the spherical voxel.

Method Ped. 3D APR40 Car 3D APR40 CyC. 3D APR40

Easy Mod. Hard mAP | Easy Mod. Hard mAP | Easy Mod. Hard mAP
F-PointNet (Qi et al. 2018) 50.53 42.15 38.08 43.59 | 82.19 69.79 60.59 70.86 | 72.27 56.12 49.01 59.13
AVOD-FPN (Ku et al. 2018) 5046 4227 39.04 4392 | 83.07 71.76 6573 73.52 | 63.76 50.55 44.93 53.08
F-ConvNet (Wang and Jia 2019) 52.16 4338 38.8 4478 | 87.36 7639 66.69 76.81 | 81.98 65.07 56.54 67.86
Uber-MMF (Liang et al. 2019) - - - - 88.40 7743 70.22 78.68 - - - -
EPNet (Huang et al. 2020) 5279 4438 4129 46.15 | 89.81 79.28 7459 81.23 - - - -
CLOCsPVCas (Pang et al. 2020) - - - - 88.94 80.67 77.15 8225 - - - -
3D-CVF (Yoo et al. 2020) - - - - 89.20 80.05 73.11 80.79 - - - -
SECOND (Yan et al. 2018) 48.73 40.57 37.77 4236 | 8334 7255 65.82 7390 | 71.33 52.08 45.83 56.41
PointPillars (Lang et al. 2019) 5145 4192 38.89 44.09 | 82.58 7431 6899 7529 | 77.10 58.65 5192 62.56
PointRCNN (Shi et al. 2019a) 4798 3937 36.01 41.12 | 86.96 76.50 71.39 7828 | 7496 5882 5253 62.10
3D Iou Loss (Zhou et al. 2019) - - - - 86.16 75.64 70.70 77.50 - - - -
Fast PointRCNN (Chen et al. 2019) - - - - 8529 7740 7024 77.64 - - - -
STD (Yang et al. 2019) 5329 4247 3835 4470 | 8795 79.71 75.09 8092 | 78.69 61.59 55.30 65.19
SegVoxelNet (Yi et al. 2020) - - - - 86.04 76.13 70.76 77.64 - - - -
VoxelFPN (Kuang et al. 2020) - - - - 85.63 76.70 69.44 77.26 - - - -
HotSpotNet (Chen et al. 2020) 53.10 45.37 4147 46.65 | 87.60 7831 7334 79.75 | 82.59 65.95 59.00 69.18
PartA? (Shi et al. 2020) 53.10 43.35 40.06 45.50 | 87.81 78.49 7351 79.94 | 79.17 63.52 5693 66.54
SERCNN (Zhou et al. 2020a) - - - - 87.74 7896 74.14 80.28 - - - -
Point-GNN (Shi and Rajkumar 2020) | 51.92 43.77 40.14 4528 | 88.33 79.47 7229 80.03 | 78.60 63.48 57.08 66.39
3DSSD (Yang et al. 2020) 50.64 43.09 39.65 44.46 | 8836 79.57 7455 80.83 | 82.48 64.10 5690 67.83
SA-SSD (He et al. 2020) - - - - 88.75 79.79 74.16 80.90 - - - -
Asso-3Ddet (Du et al. 2020) - - - - 8599 7740 70.53 77.97 - - - -
PV-RCNN (Shi et al. 2020) 52.17 4329 40.29 45.25] 9025 8143 76.82 82.83 | 78.60 63.71 57.65 66.65
Voxel R-CNN (Deng et al. 2020) - - - - 9090 81.62 77.06 83.19 - - - -
CIA-SSD (Zheng et al. 2021) - - - - 89.59 80.28 72.87 80.91 - - - -
TANet (Liu et al. 2020) 53.72 4434 4049 46.18 | 83.81 7538 67.66 75.62 | 73.84 59.86 53.46 62.39
BtcDet (Ours) 47.80 41.63 39.30 4291 | 90.64 82.86 78.09 83.86 | 82.81 68.68 61.81 71.10

Table 7: Comparison results for all three classes of objects on the KITTI fest set, evaluated by the 3D Average Precision (AP)
of 40 recall thresholds (R40) on the KITTI server. The mAPs are averaged over the APs of easy, moderate, and hard objects.

mirror : 3 mirror

Figure 9: The assembly process to approximate the complete object shapes for cyclists on KITTI (Geiger et al. 2013). The
red points are from the source objects, the blue points are from target objects, the complete shape of the target objects are
approximated by borrowing the points from the selected source objects.

- L
cws
w o
‘e ccoloe o °
‘ = o pecten
e 0
oo J-;a.
- .o 0
(AN
D
PR
o .. At .
oo, oo’
W o e
. o oo
. PN o
. e o
o gt gtee
L I
.
ameon o,
" wsveoses s
Teammcos
§~'
oo

e (e,

oy Grecstg,,,
SN TR,

~en o Taee
Sagae ¢ oo
Soceee o Sheee
deree

eces

o ¢ sece ce oo

.
oo
ceee .o .
-
cee eee . *e .
-, - . .
ce o ses e oo .
.
cesssees cove smooe ®ece 00 oo
e e','.".‘!x'.’u".v"u--a- “ e mens
.o cee, cmesscsmeene 068 e ® o o o meece o o
o oo .
o e e .
e % e, o o oo e
..:,...' .
o
¢ e, of .
N Ce ®e °
‘w. .
. R X
S,
-.‘.:
L
@ ondt oo Ce o8,
DL gy o
cwds el L
o o eeeee
o eoee®
oo

Figure 10: The assembly process to approximate the complete shapes for pedestrians on KITTI (Geiger et al. 2013). The
red points are from the source objects, the blue points are from target objects, the complete shape of the target objects are
approximated by borrowing the points from the selected source objects (red).

% oo
ceece soomen g

e

=

.
o
b, Ao, o o]

ctoee & o0 @
wocse o oo .

we o ses e

Figure 11: The assembly process to approximate the complete shapes for pedestrians on KITTI (Geiger et al. 2013). The
red points are from the source objects, the blue points are from target objects, the complete shape of the target objects are
approximated by borrowing the points from the selected source objects (red).

.’jll ﬂf! ‘%‘t ¥
t""x- =

: Ty
L

Figure 12: The zoomed in views of the predicted occupancy probability for vehicle objects on the Waymo Open Dataset (Sun
et al. 2019). The higher probability it is predicted, the larger opacity we apply to the spherical voxel.

N '\A}
4 .

A g 'w\o'
= Nl
W

2
=i,

Figure 13: The full scene views of the predicted occupancy probability for vehicle objects on the Waymo Open Dataset (Sun
et al. 2019). The higher probability it is predicted, the larger opacity we apply to the spherical voxel.

References

Chen, Q.; Sun, L.; Wang, Z.; Jia, K.; and Yuille, A. 2020.
Object as hotspots: An anchor-free 3d object detection ap-
proach via firing of hotspots. In European Conference on
Computer Vision, 68—84. Springer.

Chen, X.; Ma, H.; Wan, J.; Li, B.; and Xia, T. 2017. Multi-
view 3D Object Detection Network for Autonomous Driv-
ing. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 6526—6534.

Chen, Y.; Liu, S.; Shen, X.; and Jia, J. 2019. Fast point r-
cnn. In Proceedings of the IEEE International Conference
on Computer Vision, 9775-9784.

Deng, J.; Shi, S.; Li, P; Zhou, W.; Zhang, Y.; and Li, H.
2020. Voxel R-CNN: Towards High Performance Voxel-
based 3D Object Detection. arXiv:2012.15712.

Du, L.; Ye, X.; Tan, X.; Feng, J.; Xu, Z.; Ding, E.; and Wen,
S. 2020. Associate-3Ddet: Perceptual-to-Conceptual Asso-
ciation for 3D Point Cloud Object Detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 13329-13338.

Follmann, P.; Konig, R.; Hirtinger, P.; Klostermann, M.; and
Bottger, T. 2019. Learning to see the invisible: End-to-end
trainable amodal instance segmentation. In 2019 IEEE Win-
ter Conference on Applications of Computer Vision (WACV),
1328-1336. IEEE.

Ge, R.; Ding, Z.; Hu, Y.; Wang, Y.; Chen, S.; Huang, L.;
and Li, Y. 2020. Afdet: Anchor free one stage 3d object
detection. arXiv preprint arXiv:2006.12671.

Geiger, A.; Lenz, P; Stiller, C.; and Urtasun, R. 2013. Vision
meets robotics: The Kkitti dataset. The International Journal
of Robotics Research, 32(11): 1231-1237.

Graham, B. 2015. Sparse 3D convolutional neural networks.
arXiv preprint arXiv:1505.02890.

Graham, B.; and van der Maaten, L. 2017. Sub-
manifold sparse convolutional networks. arXiv preprint
arXiv:1706.01307.

He, C.; Zeng, H.; Huang, J.; Hua, X.-S.; and Zhang, L.
2020. Structure Aware Single-stage 3D Object Detection
from Point Cloud. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.

Hu, P; Ziglar, J.; Held, D.; and Ramanan, D. 2020. What
You See is What You Get: Exploiting Visibility for 3D Ob-
ject Detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Huang, T.; Liu, Z.; Chen, X.; and Bai, X. 2020. Epnet: En-
hancing point features with image semantics for 3d object
detection. In European Conference on Computer Vision, 35—
52. Springer.

Jiang, B.; Luo, R.; Mao, J.; Xiao, T.; and Jiang, Y. 2018.
Acquisition of localization confidence for accurate object

detection. In Proceedings of the European Conference on
Computer Vision (ECCV), 784-799.

Kingma, D. P; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; and Waslander,
S. L. 2018. Joint 3d proposal generation and object detec-
tion from view aggregation. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 1-8.
IEEE.

Kuang, H.; Wang, B.; An, J.; Zhang, M.; and Zhang, Z.
2020. Voxel-FPN: Multi-scale voxel feature aggregation for
3D object detection from LIDAR point clouds. Sensors,
20(3): 704.

Lang, A. H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; and
Beijbom, O. 2019. Pointpillars: Fast encoders for object
detection from point clouds. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,
12697-12705.

Li, B.; Ouyang, W.; Sheng, L.; Zeng, X.; and Wang, X. 2019.
Gs3d: An efficient 3d object detection framework for au-
tonomous driving. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 1019—1028.
Li, Z.; Yao, Y.; Quan, Z.; Yang, W.; and Xie, J. 2021.
SIENet: Spatial Information Enhancement Network for
3D Object Detection from Point Cloud. arXiv preprint
arXiv:2103.15396.

Liang, M.; Yang, B.; Chen, Y.; Hu, R.; and Urtasun, R. 2019.
Multi-task multi-sensor fusion for 3d object detection. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 7345-7353.

Lin, T.-Y.; Goyal, P; Girshick, R.; He, K.; and Dollar, P.
2017. Focal loss for dense object detection. In Proceedings
of the IEEE international conference on computer vision,

2980-2988.

Liu, Y.; Jing, X.-Y.; Nie, J.; Gao, H.; Liu, J.; and Jiang,
G.-P. 2018. Context-aware three-dimensional mean-shift
with occlusion handling for robust object tracking in RGB-D
videos. IEEE Transactions on Multimedia, 21(3): 664-677.
Liu, Z.; Zhao, X.; Huang, T.; Hu, R.; Zhou, Y.; and Bai, X.
2020. Tanet: Robust 3d object detection from point clouds
with triple attention. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, 11677-11684.

Pan, Y.; Xiao, P; He, Y.; Shao, Z.; and Li, Z. 2021.
MULLS: Versatile LIDAR SLAM via Multi-metric Linear
Least Square. arXiv preprint arXiv:2102.03771.

Pang, S.; Morris, D.; and Radha, H. 2020. CLOCs: Camera-
LiDAR Object Candidates Fusion for 3D Object Detection.
arXiv preprint arXiv:2009.00784.

Qi, C. R;; Litany, O.; He, K.; and Guibas, L. J. 2019a. Deep
hough voting for 3d object detection in point clouds. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 9277-9286.

Qi, C. R.; Liu, W.; Wu, C.; Su, H.; and Guibas, L. J. 2018.
Frustum pointnets for 3d object detection from rgb-d data.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 918-927.

Qi, L.; Jiang, L.; Liu, S.; Shen, X.; and Jia, J. 2019b. Amodal
instance segmentation with kins dataset. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 3014-3023.

Reddy, N. D.; Vo, M.; and Narasimhan, S. G. 2019.
Occlusion-net: 2d/3d occluded keypoint localization using
graph networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 7326—
7335.

Saleh, K.; Szénasi, S.; and Vamossy, Z. 2021. Occlusion
Handling in Generic Object Detection: A Review. In 2021
IEEE 19th World Symposium on Applied Machine Intelli-
gence and Informatics (SAMI), 000477-000484. IEEE.

Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; and
Li, H. 2020. Pv-rcnn: Point-voxel feature set abstraction
for 3d object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

10529-10538.

Shi, S.; Wang, X.; and Li, H. 2019a. Pointrcnn: 3d object
proposal generation and detection from point cloud. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 770-779.

Shi, S.; Wang, Z.; Shi, J.; Wang, X.; and Li, H. 2019b. From
Points to Parts: 3D Object Detection from Point Cloud with
Part-aware and Part-aggregation Network. arXiv preprint
arXiv:1907.03670.

Shi, S.; Wang, Z.; Shi, J.; Wang, X.; and Li, H. 2020. From
Points to Parts: 3D Object Detection from Point Cloud with
Part-aware and Part-aggregation Network. [EEE Transac-
tions on Pattern Analysis and Machine Intelligence, 1-1.

Shi, W.; and Rajkumar, R. 2020. Point-gnn: Graph neural
network for 3d object detection in a point cloud. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 1711-1719.

Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Pat-
naik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; Va-
sudevan, V.; Han, W.; Ngiam, J.; Zhao, H.; Timofeev, A.;
Ettinger, S.; Krivokon, M.; Gao, A.; Joshi, A.; Zhang, Y.;
Shlens, J.; Chen, Z.; and Anguelov, D. 2019. Scalability in
Perception for Autonomous Driving: Waymo Open Dataset.
arXiv:1912.04838.

Wang, Y.; Fathi, A.; Kundu, A.; Ross, D.; Pantofaru, C.;
Funkhouser, T.; and Solomon, J. 2020. Pillar-based ob-
ject detection for autonomous driving. arXiv preprint
arXiv:2007.10323.

Wang, Z.; and Jia, K. 2019. Frustum ConvNet: Sliding Frus-
tums to Aggregate Local Point-Wise Features for Amodal
3D Object Detection. In 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 1742—
1749. IEEE.

Xu, Q.; Sun, X.; Wu, C.-Y.; Wang, P.; and Neumann, U.
2020. Grid-gen for fast and scalable point cloud learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 5661-5670.

Yan, Y.; Mao, Y.; and Li, B. 2018. Second: Sparsely embed-
ded convolutional detection. Sensors, 18(10): 3337.

Yang, Z.; Sun, Y.; Liu, S.; and Jia, J. 2020. 3dssd: Point-
based 3d single stage object detector. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 11040-11048.

Yang, Z.; Sun, Y.; Liu, S.; Shen, X.; and Jia, J. 2019. Std:
Sparse-to-dense 3d object detector for point cloud. In Pro-

ceedings of the IEEE International Conference on Computer
Vision, 1951-1960.

Ye, M.; Xu, S.; and Cao, T. 2020. Hvnet: Hybrid voxel net-
work for lidar based 3d object detection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, 1631-1640.

Yi, H.; Shi, S.; Ding, M.; Sun, J.; Xu, K.; Zhou, H.; Wang,
Z.; Li, S.; and Wang, G. 2020. Segvoxelnet: Exploring se-
mantic context and depth-aware features for 3d vehicle de-
tection from point cloud. In 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), 2274-2280.
IEEE.

Yoo, J. H.; Kim, Y.; Kim, J. S.; and Choi, J. W. 2020. 3d-cvt:
Generating joint camera and lidar features using cross-view
spatial feature fusion for 3d object detection. arXiv preprint
arXiv:2004.12636, 3.

Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; and Li, S. Z. 2018.
Occlusion-aware R-CNN: detecting pedestrians in a crowd.
In Proceedings of the European Conference on Computer
Vision (ECCV), 637-653.

Zheng, W.; Tang, W.; Chen, S.; Jiang, L.; and Fu, C.-W.
2021. CIA-SSD: Confident IoU-Aware Single-Stage Object
Detector From Point Cloud. In AAAL

Zhou, D.; Fang, J.; Song, X.; Guan, C.; Yin, J.; Dai, Y.; and
Yang, R. 2019. Iou loss for 2d/3d object detection. In 2019
International Conference on 3D Vision (3DV), 85-94. IEEE.
Zhou, D.; Fang, J.; Song, X.; Liu, L.; Yin, J.; Dai, Y.; Li,
H.; and Yang, R. 2020a. Joint 3D Instance Segmentation
and Object Detection for Autonomous Driving. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Fattern Recognition (CVPR).

Zhou, Y.; Sun, P.; Zhang, Y.; Anguelov, D.; Gao, J.; Ouyang,
T.; Guo, J.; Ngiam, J.; and Vasudevan, V. 2020b. End-to-
end multi-view fusion for 3d object detection in lidar point
clouds. In Conference on Robot Learning, 923-932.

Zhou, Y.; and Tuzel, O. 2018. Voxelnet: End-to-end learn-
ing for point cloud based 3d object detection. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 4490-4499.

